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Preface

The rapid evolution of Wireless Sensor Networks (WSNs) and their inte-
gration into smart environments are redefining the digital landscape. From
intelligent cities to precision agriculture, from predictive maintenance
to digital healthcare, WSNs serve as the sensing backbone of the Internet of
Things (IoT)—an ecosystem that continues to grow at an exponential pace. As
both industry and research communities push the boundaries of WSN capabilities,
a comprehensive and forward-thinking reference has become indispensable.

This book, Wireless Sensor Networks in Smart Environments: Enabling Digital-
ization from Fundamentals to Advanced Solutions, is a much-needed contribution
to the field. By bringing together leading experts across different domains, it offers
a well-structured, interdisciplinary approach to the challenges and innovations
shaping the future of WSNs. The book’s four-part organization—Signal Pro-
cessing, Communication Technologies, Cybersecurity, and Applications
in Smart Environments—ensures a coherent and integrated exploration
of key topics. Readers will gain deep theoretical insights while also benefiting
from real-world case studies that illustrate the impact of WSNs in diverse
application areas.

One of the book’s most valuable contributions lies in its ability to bridge funda-
mental concepts with emerging technologies. The integration of AI, statisti-
cal signal processing, advanced wireless communication techniques, and
cybersecurity tools into WSNs is reshaping how data is collected, processed, and
utilized in smart environments.

This book provides not only methodological foundations but also a glimpse
into future trends, making it a timely and enduring resource for researchers,
graduate students, and industry professionals alike.



xxiv Preface

In the coming years, WSNs will play an even more central role in the digital
transformation of industries. This book serves as both a foundational guide and
an advanced reference, equipping readers with the knowledge and skills needed
to contribute to this rapidly evolving field.

Whether the reader is an academic, an engineer, or a technology strategist, this
book serves as an indispensable and authoritative resource, offering essential
insights into the evolving landscape of intelligent wireless sensing.

June 5th 2025 Domenico Ciuonzo, Naples (IT)
Pierluigi Salvo Rossi, Trondheim (Nor)
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Introduction

The Internet-of-Things (IoT) revolution is no longer a distant dream. Today,
billions of connected devices are seamlessly and pervasively integrated into our
daily lives, driving innovation in industries including surveillance, healthcare,
urban planning, and environmental and industrial monitoring. These devices,
primarily sensors and actuators, form the backbone of Wireless Sensor Networks
(WSNs), however, unique opportunities and challenges exist in the adoption of
WSNs for any specific vertical area. For the mentioned reason, the global WSN
market is projected to grow exponentially, with estimates valuing it at over USD
148.67 billion by 2026 (Source: Fortune Business Insights), while IoT-related
investments are expected to exceed USD 1 trillion globally in the same projected
timeframe (Source: International Data Corporation). WSNs usually consists of
a number of small, inexpensive, heterogeneous, and geographically dispersed
nodes, which reflects in limited computational and storage capabilities, and
limited energy availability. Based on these premises, WSNs are in charge of
(i) monitoring a physical asset and gathering vast amounts of data, (ii) dis-
seminating (to other nodes) or report (to a collective unit) such data over the
wireless medium, (iii) elaborating high-level analytics for the scenario at hand,
(iv) (possibly) controlling the environment, and (v) preserving the security of
the whole monitored/controlled physical asset while implementing all these
functionalities.

Accordingly, this edited book deals with the design and deployment of WSNs,
offering a comprehensive journey from fundamental to advanced solutions. The
text is organized into four parts, each addressing a critical aspect of WSN tech-
nology. Part I (Chapters 1–3) delves into the core of signal processing techniques
crucial for efficient data handling in WSNs. Part II (Chapters 4–6) shifts the
focus to the communication technologies allowing these networks to operate
reliably and efficiently, even under demanding conditions (e.g. low-energy
budget). Part III (Chapters 7–9) tackles cybersecurity, an essential area given
the vulnerabilities these networks face in a hyper-connected world. Finally,
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Part IV (Chapters 10–15) showcases practical applications of WSNs, highlighting
their transformative potential in smart environments, from urban monitoring to
industrial automation.

This structure provides a cohesive understanding of the evolving role that WSNs
play in enabling IoT, ensuring readers are well-equipped to harness the full poten-
tial of this rapidly expanding technological landscape.

Part I – Signal Processing in Wireless Sensor Networks

WSNs gather complex, high-dimensional data, representing a serious challenge
for efficient processing. Signal processing, specifically adapted, is crucial to man-
age effectively WSN data. The first part of this book focuses on signal processing for
WSNs, offering strategies to handle and analyze the data they generate. It includes
three chapters, each addressing different but connected aspects. It will make read-
ers gain both theoretical and practical tools to master WSN-data processing and
maximize WSN potential.

In Chapter 1 (by Morgenstern, Dabush, Huleihel, Routtenberg, and Poor) intro-
duces the foundational concepts of graph signal processing (GSP), a cutting-edge
approach tailored to handle signals over irregular domains such as those encoun-
tered in WSNs. GSP provides a robust framework for analyzing the intricate
structures inherent in WSN data. Essential GSP tools are explored, including the
graph Fourier transform and Laplacian-based regularization. Additionally, recent
advancements in GSP methodologies are covered, such as smoothness validation,
signal recovery, anomaly detection, and topology identification, all within the
context of WSN applications. This chapter sets the basis for understanding how
GSP can enhance the interpretation and utility of WSN data.

In Chapter 2 (by Qureshi, Rikos, Charalambous, and Khan) shifts focus to
distributed learning methods, essential for harnessing the full potential of WSNs in
real-world applications. Here, the significance of distributed learning is discussed
with related practical challenges and with limitations of current methodologies.
The chapter aims to equip the readers with the knowledge to develop innovative
approaches building on existing work. Practical applications, such as fine-tuning
vision transformers in WSN environments, illustrate how distributed learning
can be applied to enhance performance and efficiency in diverse scenarios.

In Chapter 3 (by Cuthbert and Dey) addresses the critical task of decentralized
and distributed non-Bayesian quickest change detection in energy-harvesting
WSNs. This chapter delves into the mechanisms of how sensors operate within
energy constraints, periodically sampling and computing log-likelihood ratios
(LLRs) to detect changes. Both decentralized and distributed scenarios are
examined, highlighting the balance between quantization rates and energy
consumption for accurate decision-making. Additionally, an optimal sensing and
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quantization rate allocation problem is presented, providing analytical solutions
and asymptotic expressions for detection delays and false alarm times at the
fusion center.

Part II – Communications Technologies in Wireless
Sensor Networks

In the fast-paced world of WSNs, efficient communication technologies are key to
their success, which should be adaptable to diversified application scenarios. Part
II of this book explores the latest innovations that boost WSN performance, reli-
ability, and efficiency. It includes three chapters, each tackling unique challenges
and presenting cutting-edge solutions. From integrating reconfigurable intelligent
surfaces (RIS) for better decision fusion to developing low-complexity rules for
massive multi-input multi-output (MIMO) systems and real-time WiFi protocols,
these chapters offer insights into advanced communication methods that enhance
WSNs across diverse applications.

In Chapter 4 (by Ciuonzo, Zappone, Salvo Rossi, and Di Renzo) focuses on the
distributed detection of phenomena of interest (POI) through decision fusion
techniques in WSNs. It examines how decisions from multiple sensors, collected
by a fusion center over a shared flat-fading channel with multiple antennas, can
be integrated to make more accurate global decisions. The chapter introduces
channel-aware fusion techniques supported by smart wireless environments,
emphasizing the role of RIS. RIS aids in conveying the state of the POI to the fusion
center efficiently, promoting energy-efficient data analytics aligned with the IoT
paradigm. The chapter progresses from presenting an optimal decision fusion rule
to deriving a suboptimal joint fusion rule and RIS design. This approach balances
performance with reduced complexity and system knowledge requirements.
Simulation-based evaluations underscore the benefits of incorporating RIS, even
with suboptimal designs.

In Chapter 5 (by Chawla, Ciuonzo, Jagannatham, and Salvo Rossi), the focus
shifts to the development of low-complexity fusion rules for detecting unknown
parameters in millimeter-wave (mmWave) massive MIMO WSNs. The chapter
explores both centralized and distributed MIMO antenna topologies, evaluating
system performance based on false alarm and detection probabilities. It delves
into the optimization of sensor gains to enhance detection performance and
examines power scaling laws for extended sensor battery life without sacrificing
performance. Additionally, this chapter addresses the challenges of channel state
information uncertainty, leveraging sparse Bayesian learning for mmWave mas-
sive MIMO channel estimation. Extensive simulations validate the effectiveness of
the proposed detectors, highlighting their practical applicability and performance
under various conditions.
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In Chapter 6 (by Yun, Lin, Zhou, and Han) reviews three innovative
802.11-based WiFi solutions tailored to meet the urgent need for real-time,
high-speed wireless communication protocols in time- and mission-critical
wireless sensing and control systems. The first solution, an RT-WiFi protocol,
employs a time division multiple access (TDMA)-based data link layer scheduler
to guarantee deterministic packet delivery timings using commercial off-the-shelf
(COTS) devices. The second solution, SRT-WiFi, is a software-defined radio
(SDR)-based implementation on an FPGA platform, offering full-stack config-
urability in line with evolving IEEE 801.11 standards. Lastly, the chapter explores
the implementation of 802.11a/g/n/ac physical layers on GNU Radio-based SDR
platforms, supporting both single-user and multiuser MIMO transmissions. The
efficacy of these solutions is demonstrated through real-world testbed deploy-
ments and extensive simulations, confirming their suitability for high-speed,
reliable communication in WSNs.

Part III – Cyber Security in Wireless Sensor Networks

Despite WSNs have transformed how we engage with our environment, the dis-
tributed and resource-limited nature of WSNs makes them highly susceptible to
cyberthreats. This part explores the key challenges and related innovative solu-
tions for securing these networks. The three chapters offer a deep dive into WSN
security, covering topics from enhancing privacy in distributed filters to unified
frameworks for anomaly detection, while balancing energy efficiency and security.
As reliance on WSNs grows, the insights presented here are vital for protecting our
connected world.

In Chapter 7 (by Venkategowda, Moradi, and Werner) explores the application
of distributed Kalman filters (DKFs) in multi-agent networks, a crucial technique
for enhancing tracking and information sharing among agents. While DKFs
significantly improve tracking accuracy, they also introduce vulnerabilities by
exposing shared information to potential adversaries. This chapter addresses these
privacy and security challenges head-on. A privacy-preserving DKF (PP-DKF)
is introduced that enhances privacy through techniques such as noise injection
and state decomposition, providing theoretical bounds on privacy leakage even
in the presence of an honest-but-curious adversary. Furthermore, a robust DKF
is presented, with the aim of designing to counteract Byzantine adversaries who
intentionally falsify data. This robust approach transforms the problem into a
distributed optimization task, utilizing the total variation penalty term and the
distributed subgradient method for resilient state estimation. Through rigorous
numerical simulations and theoretical analysis, the chapter demonstrates the
effectiveness of these innovative algorithms in protecting the integrity and privacy
of multi-agent networks.
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In Chapter 8 (by Yilmaz, Kurt, and Wang) addresses the critical issue of
anomaly detection in the rapidly evolving landscape of complex networks such
as the IoT. These networks are characterized by their high dimensionality,
heterogeneity, and the dynamic nature of both systems and threats. The chapter
focuses on the application of the quickest detection theory, which is essential for
the timely identification of anomalies and intrusions in such environments. The
novelty of this chapter lies in its unified framework approach, integrating various
challenges and constraints including resource limitations and privacy concerns.
By developing comprehensive quickest detection algorithms, the chapter provides
a robust methodology for early detection of sudden anomalies, ensuring the
security and reliability of critical network infrastructures. This holistic approach
contrasts with existing methods that often address these challenges in isolation,
thereby paving the way for more efficient and secure network operations.

In Chapter 9 (by Quan and Varshney), the interplay between energy effi-
ciency and security within WSNs is examined, focusing on the impact of Byzantine
attacks. These attacks represent a significant threat to the decision-making pro-
cesses in WSNs, particularly in schemes designed for energy efficiency. The
chapter specifically investigates ordered transmission-based (OT-based) schemes,
which enhance energy efficiency by transmitting only the most informative data
while omitting less critical information. The challenge arises from the limited
ability of the fusion center to fully comprehend the behavior of all sensors
due to intermittent data reception. This makes OT-based schemes vulnerable
to Byzantine attacks, where adversaries could compromise some sensors and
disrupt the network’s decision-making process. The chapter provides an in-depth
analysis of how these attacks affect OT-based schemes and discusses potential
countermeasures to mitigate their impact, thereby ensuring both energy efficiency
and security in WSNs.

Part IV – Applications in Smart Environments

As we enter an age of unprecedented connectivity, smart environments have
become a key innovation. These spaces use advanced technologies to interact with
and adapt to their users. Part IV of this book explores various applications in smart
environments, showing how IoT enhances functionality, efficiency, and user
experience across different fields. This section highlights the diverse ways smart
technologies are transforming urban life, from cultural engagement and resource
management to security and strategy. Each of the six chapters offers insights into
the potential and challenges of creating intelligent environments in today’s world.

The Internet of Musical Things (IoMusT) represents a novel convergence of IoT
and music technology. Chapter 10 (by Casari and Turchet) envisions the trans-
formative potential of IoMusT in smart cities, introducing the concept of smart
musical cities. By integrating IoMusT devices with 5G and beyond, we explore
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a range of connected applications such as networked music performances, inter-
active audience experiences, and virtual agent interactions. This paradigm shift
promises to enrich cultural heritage and pedagogy, making urban environments
more engaging and immersive.

WSNs play a critical role in target tracking due to their enhanced reliability
and precision. However, real-world applications often encounter measurement
outliers caused by sensor faults or disturbances. Chapter 11 (by Wang, Li, and
Fang) introduces centralized and decentralized robust tracking schemes designed
to detect and remove outliers, thereby improving tracking accuracy. Utilizing vari-
ational Bayesian inference, these schemes enhance the reliability of target tracking
in smart environments.

Efficient water management is crucial for sustainable urban living. Chapter 12
(by Perdigão Sousa, da Silva Júnior, Cavalcante, and Fischione) presents a
cutting-edge approach to leakage detection in water distribution networks
(WDNs) using machine learning techniques. Focusing on a residential area in
Stockholm, the proposed federated learning approach preserves data privacy
while improving detection rates. The chapter highlights significant improvements
in detection purity rates, demonstrating the effectiveness of the proposed method
in maintaining the integrity of WDNs.

Understanding the coordination and objectives of adversarial UAV networks is
vital for security and defense applications. Chapter 13 (by Krishnamurthy and
Snow) offers an abstract interpretation of such interactions, framing coordina-
tion as a multi-objective optimization problem. By applying tools from microeco-
nomic theory, the chapter presents methods to detect coordination and infer UAV
objectives from radar signals. This innovative approach bridges the gap between
physical-layer radar technology and strategic UAV behavior analysis.

In Chapter 14 (by Mukhopadhyay, Nag, and Suryadevara) explores cutting-
edge sensor systems and immersive technologies used to create responsive,
data-driven smart environments. It discusses advancements in MEMS, nanoma-
terials, and wireless protocols, highlighting their roles in enhancing real-time
monitoring and decision-making. By integrating immersive technologies such as
AR and VR with IoT systems, this work demonstrates innovative approaches to
improving human interaction, system efficiency, and resource management in
smart environments. The chapter provides essential insights for optimizing smart
technology applications across various domains.

The IoT is integral to the realization of smart environments, enabling extensive
monitoring and management of resources through interconnected devices.
Chapter 15 (by Dargie, Rottleuthner, Schmidt, and Wählisch) addresses the chal-
lenges posed by harsh deployment environments and the vast data generated by
IoT systems. Through two complementary use cases, it outlines the requirements
and recommendations for implementing low-cost, low-power networks. The
chapter provides valuable insights into overcoming obstacles and maximizing the
benefits of IoT in smart environments.
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1.1 Introduction

Wireless Sensor Networks (WSNs) have become central to modern data
acquisition tasks, facilitating data gathering through interconnected sensor nodes
[Akyildiz et al., 2002; Kandris et al., 2020]. Data originating from WSNs are usually
distributed nonuniformly in space and time, which differs from regular-domain
signals such as digital images and discrete-time sequences. Furthermore, WSNs
are often implemented in applications that are characterized by complex and non-
linear models [He et al., 2004; Werner-Allen et al., 2006; Kim et al., 2019]. The pro-
cessing of signals in WSNs is hence often intractable, especially for large networks,
so it is crucial to develop advanced tools to model, process, and analyze them.

The field of graph signal processing (GSP) has gained considerable interest
in the last decade due to the growing importance of networked data in various
settings such as social, energy, transportation, sensor, and neural networks
[Sandryhaila and Moura, 2013; Shuman et al., 2013; Ortega, 2022]. GSP theory
expands concepts and techniques from traditional digital signal processing (DSP)
to data indexed by graphs. GSP concepts include the graph Fourier transform
(GFT), graph signal smoothness, graph filter design, and sampling and recovery of
graph signals. Various GSP tools have been recruited to solve many fundamental
engineering problems, such as signal denoising [Shuman et al., 2011], data
reconstruction [Feng et al., 2021; Morgenstern and Routtenberg, 2024], node
clustering [Sahai et al., 2012], consensus algorithms [Sandryhaila et al., 2014], and
anomaly detection [Egilmez and Ortega, 2014]. Since these problems frequently

Wireless Sensor Networks in Smart Environments: Enabling Digitalization from Fundamentals to Advanced
Solutions, First Edition. Edited by Domenico Ciuonzo and Pierluigi Salvo Rossi.
© 2025 The Institute of Electrical and Electronics Engineers, Inc. Published 2025 by John Wiley & Sons, Inc.
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Figure 1.1 Overview of Chapter 1: end-to-end approach for processing networked
signals using GSP tools in WSN applications. The approach comprises of sensor readings,
graph modeling and signal analysis options, and the application of GSP tools to the
acquired data.

feature in WSN data-processing tasks, the utilization of GSP tools in this context
is particularly efficacious and could mark a significant shift in the methodologies
and approaches employed in this sphere.

This chapter presents an end-to-end approach for processing WSN signals with
GSP tools (see Figure 1.1). First, we introduce GSP-based models for WSNs as undi-
rected weighted graphs in Section 1.2. Fundamental GSP concepts, including the
graph Laplacian matrix, graph signal smoothness, and the graph spectrum, are
then introduced in Section 1.3. Additionally, the chapter discusses the concept of
graph signal smoothness validation in Section 1.4, which enables analyzing the
signal with respect to (w.r.t.) the underlying graph. Next, based on the smoothness
assumption, methods for graph signal recovery and anomaly detection are pro-
posed in Sections 1.5 and 1.6, respectively. Utilizing the graph signal properties,
we then present approaches to discover the underlying network structure. Finally,
concluding remarks and future directions are given in Section 1.8.

1.2 Graph Models for WSNs

Graph theory enables the creation of intricate models that can effectively repre-
sent various types of relationships. In this context, we model WSNs as undirected
weighted graphs. This approach is inherently intuitive, given that WSN deploy-
ments typically feature sensor nodes interconnected by communication links that
are easily represented by graph structures. Consequently, this modeling approach
enables the application of GSP tools in WSNs.

The graphical representation should capture the inherent spatial and functional
relationships among sensor nodes and facilitate the translation of complex WSN
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Figure 1.2
Illustration of an
undirected graph
with 3 nodes,
 = {a, b, c}, the
edge set, 𝜉 =
{(a, b), (a, c), (b, c)},
and the edge weights,
𝑤a,b = 0.2, 𝑤a,c = 0.1,
and 𝑤b,c = 0.3.

data into an analyzable graph format. Different models can
be considered to this end. This section outlines the gen-
eral elements of the WSN in graph terms and introduces
three optional graph models [Egilmez and Ortega, 2014]:
the distance-based model, the correlation-based model,
and the hybrid distance and correlation-based model.
These perspectives provide a nuanced understanding of
the diverse ways in which graph theory can be applied to
WSN data.

We consider a WSN with || sensors, where each sen-
sor measures a specific attribute. The underlying relation
between the measured entities can be modeled by an undi-
rected and weighted graph  = {, 𝜉}, which consists of a
set of nodes  = {1,… , ||} and a set of edges 𝜉. A pos-
itive edge weight between nodes k and m, 𝑤k,m > 0, indi-
cates that the nodes are connected, that is, (k,m) ∈ 𝜉, and
quantifies the similarity between these nodes. Conversely,
we define 𝑤k,m = 0 if the nodes are not connected, that
is, (k,m) ∉ 𝜉. We assume that the graph is connected, the edge weights are pos-
itive, and no more than one edge can connect any pair of nodes, as illustrated in
Figure 1.2.

In all the models below, the node set  is considered to be fixed. Thus, the graph
model is equivalently determined by the graph adjacency matrix W, defined by

Wk,m =

{
𝑤k,m (k,m) ∈ 𝜉

0 otherwise
k,m = 1,… , || . (1.1)

Hence, the adjacency matrix enables a matrix representation of the graph, which
is often used for the design and formulation of graph models. In the following, we
introduce different graph-based models appropriate for WSNs by defining their
adjacency matrices.

1.2.1 Distance-Based Model

In this model, we consider the case where the locations of the sensors are known.
This is often the case when the system sensors obtain a Global Positioning System
(GPS) tag, or, in static systems. The underlying assumption in this model is that
the distance between the sensors also defines the relation between the entities.
For example, in environmental monitoring systems, it is a fair assumption that
measurements gathered from closely positioned sensors will exhibit similar values
[Sandryhaila and Moura, 2013]. By denoting D(k,m) as the 2D-Euclidean distance
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between the locations of the sensors at nodes k and m, we define the distance-based
adjacency matrix, W(d) elementwisely by [Shuman et al., 2013]:

W (d)
k,m =

{
e

−D(k,m)2

Δ2
d D(k,m) ≤ 𝛾d

0 otherwise,
(1.2)

where Δd determines the exponential decay rate, and 𝛾d is the threshold determin-
ing the graph connectivity. It can be seen that selecting a low value for 𝛾d results
in a low number of edges, i.e. with a sparse graph.

The distance-based modeling proposed in (1.2) is illustrated in Figure 1.3. It is
important to highlight that (1.2) can be readily generalized for 3D-Euclidean dis-
tance and for alternative distance metrics, such as the Manhattan distance [Cardei
et al., 2008].

1.2.2 Correlation-Based Model

In this model, we consider the case where the underlying relation between the sys-
tem nodes can be characterized due to their spatial and/or temporal correlations
[Pradhan et al., 2002; Vuran and Akyildiz, 2006]. By defining 𝜌(k,m) as the corre-
lation coefficient between the entities measured by the sensors at nodes k and m,
we define the correlation-based adjacency matrix, W(c) elementwisely by

W (c)
k,m =

{|𝜌(k,m)| |𝜌(k,m)| ≥ 𝛾c
0 otherwise,

(1.3)

(a) (b) (c)

Figure 1.3 Illustration of the distance-based model: (a) system sensors: sensor network
depicted in a 2D-Euclidean space. (b) Sensor-centered circles of radius 𝛾d = 2.2, each
sensor is associated with a circle of radius 𝛾d∕2. (c) The resulting distance-based graph,
where nodes are connected by an edge if the spheres corresponding to two (or more)
circles intersect, indicating that the distance between vertices is smaller than 𝛾d . The
parameter Δd has been set to Δd = 𝛾d = 2.2.
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where 𝛾c is the threshold determining the graph connectivity. In a similar manner
to in (1.2), selecting a high value of 𝛾c in (1.3) will result in a sparse graph.

Hybrid models that take into account both the correlation between the appli-
cation entities and the geometric positions of the sensors can also be considered.
For instance, here we define the hybrid-distance- and correlation-based adjacency
matrix, W(b) elementwisely by

W (b)
k,m =

{
e
− D(k,m)2

Δ2
d e

− (1−|𝜌(k,m)|)2
Δ2

c |𝜌(k,m)| ≥ 𝛾c and D(k,m) ≤ 𝛾d
0 otherwise,

(1.4)

where D(k,m) and 𝜌(k,m) are the 2D-Euclidean distance and the correlation coef-
ficient between nodes k and m, respectively. The parameters Δc and Δd determine
the exponential decay rate for each of the exponents, and the thresholds 𝛾d and
𝛾c determine the graph connectivity. It can be seen that in order for two nodes to
be connected, they must be sufficiently correlated, i.e. |𝜌(k,m)| ≥ 𝛾c, and obtain a
short enough distance, i.e. D(k,m) ≤ 𝛾d. Additionally, the parameters Δc and Δd
also determine which of the properties is more dominant in the relation quantified
by the edge weight.

1.2.3 Alternative Models

It should be noted that the modeling of the underlying graph in WSN applications
is not limited to the models described above and can be specified depending on the
application. For example, in WSNs deployed in power systems [Tariq and Poor,
2016], the underlying graph may naturally emerge from the physical interactions
of the system. Moreover, additional elements in WSNs, such as sink nodes and
communication links, can also be considered as part of the modeling [Schizas
et al., 2008]. Thus, certain scenarios may favor a communication-based graph over
a distance-based one, emphasizing communication paths and accommodating
the representation of communication losses due to obstacles. Some additional
graph models may also be considered: (i) a grid-based model for structured
layouts, where nodes are connected if they share an edge in the grid [Servetto and
Barrenechea, 2002] (this model is suitable for applications like agricultural mon-
itoring [Díaz et al., 2011]); (ii) a random geometric graph model (this is realistic
for scenarios where sensor nodes are deployed randomly and communication is
confined to nearby nodes [Ramamoorthy et al., 2005]); (iii) a hierarchical/tree
topology (this is beneficial for efficient data aggregation and transmission to a
central point [Hasheminejad and Barati, 2021]); and (iv) a mesh topology, where
each sensor node serves as a router, enabling multi-hop communication and
offering redundancy and multiple paths for enhanced network reliability (this
is particularly suitable in applications where robustness and fault tolerance are
critical [Nurlan et al., 2021]).
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1.3 Concepts in GSP

In WSNs, sensor measurements can be represented as graph signals defined as

x ∶  → ℝ||. (1.5)

Each signal element in (1.5) is a real-valued parameter that is associated with a
single node of the graph. This definition can be extended to more complicated sce-
narios, including multidimensional vectors at each node and signals incorporating
missing measurements.

A graph shift operator (GSO), S, operates on graph signals, similar to how time
shift operates on time series in DSP. However, while time shift adjusts the position
of signal values along the time axis, a graph shift redistributes signal values based
on the structure of the underlying graph. The GSO, S, is an || × || matrix with
entries that satisfy

Sk,m = 0, if k ≠ m and (k,m) ∉ 𝜉, ∀k,m ∈ . (1.6)

Consequently, the GSO defines a local operator that, when applied on a graph sig-
nal, x, results in

[Sx]k = Sk,kxk +
∑

m∶(k,m)∈𝜉
Sk,mxm. (1.7)

That is, the signal value xk at node k is replaced with a linear combination of values
at the node itself and the neighbors of node k.

GSP tools can be developed for various GSOs such as the adjacency matrix in
(1.1). For the sake of simplicity, the tools presented in this chapter are based on
the specific GSO of the graph Laplacian matrix, L. The elements of the matrix L
are defined as

Lk,m =

⎧⎪⎪⎨⎪⎪⎩

∑
(k,j)∈𝜉

𝑤k,j k = m

−𝑤k,m (k,m) ∈ 𝜉

0 otherwise

k,m = 1,… , ||. (1.8)

Similar to the adjacency matrix in (1.1), the graph Laplacian matrix fully captures
the graph structure. The relation between those matrices is given by

L = diag(𝟏TW) − W, (1.9)

where diag(𝟏TW) is a diagonal matrix whose (k, k)th entry is
∑||

m=1 Wk,m, and 𝟏 is
the all-one vector.
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1.3.1 Graph Spectrum

The graph Laplacian matrix of the graph , which is defined in (1.8), is a real, sym-
metric, and positive semidefinite matrix. Thus, its singular value decomposition
(SVD) is given by

L = V diag(𝝀)VT , (1.10)

where the columns of V, {Vi}i∈, are the eigenvectors of L and thus satisfy
VT = V−1. The diagonal matrix diag(𝝀) ∈ ℝ||×|| consists of the eigenvalues of
L, 𝜆1,… , 𝜆||, which satisfy 0 = 𝜆1 ≤ 𝜆2 ≤ · · · ≤ 𝜆||. Additionally, under the
assumption that the graph is connected, it can be verified that the eigenvalues
satisfy 𝜆k > 0, k = 2,… , ||.

The SVD of the graph Laplacian matrix enables a definition for the graph
spectrum of . Specifically, the eigenvalues, 𝜆1,… , 𝜆||, are interpreted as graph
frequencies with the eigenvectors in V as their corresponding graph frequency
components. Using this interpretation, we can represent the graph signal in (1.5)
in the graph frequency domain by

(a) x̃ = VTx, (b) x = Vx̃, (1.11)

where (a) represents the GFT of the vector x and (b) represents the inverse GFT
of x̃.

1.3.2 Graph Signal Properties

A central focus of GSP is analyzing the graph signal defined in (1.5) and identify-
ing its unique properties w.r.t. the underlying graph. In this context, an important
property in GSP is graph signal smoothness, where a graph signal is considered to
be smooth when its values exhibit moderate variations across the graph, i.e. sig-
nal elements have similar values at neighboring nodes. The graph total variation
(GTV) is a key measure of smoothness [Shuman et al., 2013], which is defined in
the node domain by

TV(x) ≜ xTLx = 1
2

||∑
k=1

||∑
m=1

𝑤k,m
(

xk − xm
)2
. (1.12)

By substituting (1.10) and (1.11) in (1.12), we obtain the GTV definition in the
graph frequency domain:

TV(x) = xTVdiag(𝝀)VTx = x̃T diag(𝝀)x̃ =
||∑
k=1
𝜆kx̃k

2. (1.13)

According to (1.12), a graph signal x is smooth if its GTV, TV(x), is small in terms
of the specific application. It can be seen that in order for a graph signal to be
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considered smooth, its elements in connected nodes need to have similar values
(according to the right-hand side (r.h.s.) of (1.12)), and its graph spectrum needs to
be concentrated in the small eigenvalues region (according to the r.h.s. of (1.13)).
The assessment of graph variation can also be formulated using alternative vector
norms, such as other 𝓁p norms [Chen et al., 2015a].

An example of a smooth graph signal is a low-frequency bandlimited graph sig-
nal, defined as follows.

Definition 1.1 (Bandlimited graph signal) A graph signal, x, is ideal
𝛽-bandlimited in the graph frequency domain w.r.t. the GFT basis V if

x̃k = 0, k = 𝛽 + 1,… , ||, (1.14)

where the parameter 𝛽 is referred to as the cutoff graph frequency.

Definition 1.1 implies sparsity in the signal’s representation in the spectral,
graph frequency domain. Intuitively, similar to bandlimited DSP signals, which
are characterized by a low variation over consecutive time slots, a graph-
bandlimited signal is expected to obtain a low GTV.

In Figure 1.4, we present the first, third, fifth, and eight eigenvectors of the graph
Laplacian matrix associated with the graph from Figure 1.3c, to illustrate the con-
cept of graph signal smoothness. It can be seen that the eigenvectors display an
increasing variation w.r.t. the graph as the eigenvalue (graph frequency) increases.

1.3.3 Graph Filters

Filtering constitutes a fundamental concept in GSP applications, similar to in
DSP. A graph filter is a function h(⋅) applied to a GSO, which is associated with
the underlying graph. By selecting the GSO as the graph Laplacian matrix, L, we
present the following definition for graph filters based on the SVD in (1.10).

Definition 1.2 (Graph filters) For a given graph associated with the graph
Laplacian matrix L, a graph filter h(L) is an || × || matrix given by

h(L) = Vdiag(h(𝝀))VT , (1.15)

where h(𝝀) ≜ (h(𝜆1),… , h(𝜆||)) is the graph frequency response and corresponds
to the graph frequencies 𝜆k, k = 1,… , || defined in (1.10). Moreover, if the
eigenvalues are not distinct, then h(𝜆k) = h(𝜆m) for any k and m that satisfy
𝜆m = 𝜆k [Ortega, 2022].

The output of the graph filter, provided with the input signal x, i.e.

y = h(L)x, (1.16)
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(a) (b)

(c) (d)

Figure 1.4 Example of Four eigenvectors of the graph Laplacian matrix associated with
the graph in Figure 1.3. Each eigenvector is a graph signal, and the shading (and the
number) at each node represents the signal value at the node. (a) 𝜆1 = 0, (b) 𝜆3 = 0.81,
(c) 𝜆5 = 1.52, and (d) 𝜆8 = 2.51.

is also a graph signal, as defined in (1.5). Moreover, as shown in the following
theorem, in the graph spectral domain, the output signal is the result of a
Hadamart product (elementwise product) between the input signal and the graph
frequency response. A block diagram of this filtering process is presented in
Figure 1.5.

GFT diag(h(λ)) Inverse
GFT

x x̃=VT x ỹ= diag(h(λλλ))x̃ ỹ=Vy

Figure 1.5 Block diagram illustrating the filtering of a graph signal x by the graph
filter in (1.15).
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Theorem 1.1 The graph spectral representation of the filtered signal satisfies

ỹ = diag(h(𝝀))x̃ (1.17)

if and only if h(L) is defined by (1.15).

Proof: (→) By multiplying V on both sides of (1.17) and using the definitions of
the GFT and the inverse GFT from (1.11), we obtain

y = Vỹ = Vdiag(h(𝝀))x̃ = Vdiag(h(𝝀))VTx.

Hence, the graph filter in this case is defined by (1.15).
(←) By substituting (1.15) in the definition of the inverse GFT from (1.11), we

obtain

ỹ = VTy = VTVdiag(h(𝝀))VTx = diag(h(𝝀))x̃. (1.18)

From Theorem 1.1, we observe that filtering a signal with the graph filter in
(1.15) is equivalent in the graph frequency domain to multiplying the signal’s spec-
trum by the frequency response of the filter. Thus, (1.15) can be perceived as an
extension of the convolution theorem from DSP to graphs [Shuman et al., 2013].
Consequently, in a similar manner to DSP, the graph filter in (1.15) can be catego-
rized based on its filter frequency response, e.g. as low-pass, band-pass, high-pass,
or all-pass [Sandryhaila and Moura, 2014].

The following definition and theorem present an alternative representation of
the graph filter in (1.15). In this representation, the graph filter is defined as a
polynomial of the graph Laplacian matrix.

Definition 1.3 (Graph filters − alternative representation) For a given
graph associated with the graph Laplacian matrix L, a shift-invariant graph filter
h(L) is an N × N matrix that can be written as a polynomial of L:

h(L) = p(L) =
J∑

j=0
ajLj, (1.19)

where L0 = I and the scalars {aj}j are the polynomial coefficients.

Theorem 1.2 Any shift-invariant graph filter, defined as in (1.19), can be defined
as the graph filter in (1.15).

Proof: The proof can be found in Page 86 in Ortega [2022].

The shift-invariant graph filter in (1.19) is a local operator. That is, the filter out-
put at node k, yk, is a linear combination of the input signal at nodes with a geodesic
distance smaller than or equal to J from node k. This filter is a generalization of the
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conventional DSP shift-invariant filter, applied to graph signals. Moreover, analo-
gously to DSP shift-invariant filters, matrix multiplication between shift-invariant
graph filters is commutative.

It is noted that the graph filters presented in this chapter can be alternatively
defined using other GSOs instead of the graph Laplacian matrix [Sandryhaila
et al., 2014].

1.4 GSP-Based Smoothness Validation for WSN
Signals

Graph signals obtained from WSN data exhibit smoothness, i.e. a low GTV,
as defined in (1.12). This observation seems intuitive when considering the
correlation-based model in Section 1.2.2 and may also hold true for the
distance-based model in Section 1.2.1, given that WSN data often exhibit spatial
similarity features [Pattem et al., 2008; Kong et al., 2013]. Graph signal smooth-
ness is the basis for a variety of GSP approaches that can be utilized for WSN
applications, including signal recovery (see Section 1.5) and anomaly detection
(see Section 1.6). Therefore, in these applications, assessing the smoothness level
of system signals w.r.t. the underlying graph is expected to provide insights that
can enhance the application performance.

1.4.1 Smooth Graph Filters

A smooth graph filter is a special case of the graph filter defined in (1.15), in
which the output signal y from (1.16) has a low GTV as defined in (1.12). The
following definition gives a mathematical expression for this concept [Shaked and
Routtenberg, 2021; Dabush and Routtenberg, 2024].

Definition 1.4 (Smooth graph filter) Let the elements of the input graph
signal, x, be independent and identically distributed (i.i.d.) zero-mean random
variables. Additionally, denote y as the output of the graph filter. Then, h(⋅) in
(1.15) is a smooth graph filter if

r ≜
E[||x||2]
E[||y||2] × E[yTLy]

E[xTLx]
< 1. (1.20)

It can be seen that Definition 1.4 is based on the GTV. In [Dabush and Routten-
berg, 2023], it is shown that r can be written in the graph frequency domain as

r = 𝜆−1
a𝑣g ×

∑||
k=1 𝜆kh2(𝜆k)∑||

k=1 h2(𝜆k)
< 1, where 𝜆a𝑣g ≜

1|| ||∑
k=1
𝜆k. (1.21)
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Figure 1.6 Examples of smooth graph filters. (a) Heat diffusion Kernel filter and
(b) Laplacian (Tikhonov) filter.

Thus, if the energy of the frequency response is uniformly distributed across
all graph frequencies, the ratio will be 1, indicating that the graph filter is not
smooth. If the energy is biased toward low graph frequencies, the ratio will be
lower than 1, indicating that the graph filter is smooth.

In Figure 1.6, we present two smooth graph filters [Isufi et al., 2024]: (i) the
heat diffusion kernel filter, h(𝜆k) = exp{−𝜆k}, k = 1,… , || and (ii) the Lapla-
cian (Tikhonov) filter, h(𝜆k) = 1∕(1 + 2.5𝜆k), k = 1,… , ||. It can be seen that
both filters are graph low-pass filters (GLPFs) that preserve the energy in the lower
graph frequencies of the input signal, while reducing the energy of the signal at
the higher graph frequency regime. Thus, they are smooth graph filters (1.21).

In Figure 1.7 we compare the input signal x, which is drawn from the
Gaussian distribution  (𝟎, I), with the output y, which is filtered by the
heat-diffusion-kernel GLPF. As expected, the output signal exhibits smoother
variation over the graph in the vertex domain. In addition, it can be seen that the
higher graph frequencies of the input signal have been attenuated.

We conclude our discussion on smooth graph filters with the following two
remarks.

Remark 1.1 An alternative definition that evaluates whether a graph filter can
be considered as a graph low-pass (GLP) filter is described in Definition 1 in
Ramakrishna et al. [2020].

Remark 1.2 Modeling graph signals as outputs of graph filters is common prac-
tice for signal analysis widely used in GSP and graph neural networks (GNNs)
[Schultz et al., 2021; He and Wai, 2022; Kroizer et al., 2022]. Specifically, smooth
graph signals are often modeled as the output of smooth graph filters, where the
input is a white Gaussian noise vector [Kalofolias, 2016; Dong et al., 2020].
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Figure 1.7 Example: comparison between the input signal x, which is drawn from
the Gaussian distribution  (𝟎, I), and the output y, which is filtered by the
heat-diffusion-kernel GLPF h(𝜆k) = exp{−𝜆k}, k = 1,… , ||. (a) Input: x,
TV(x) = 13.2942, (b) Output: y, TV(y) = 0.7179, (c) x̃ = VT x, and (d) ỹ = VT (y).

1.4.2 Semi-parametric Graph Signal Smoothness Detector

In this section, our goal is to determine whether a sequence of signals {y[n]}N
n=1

are smooth graph signals. Based on Remark 1.2, the signals {y[n]}N
n=1 are modeled

as the outputs of a linear graph filter, as defined in (1.16):

y[n] = h(L)x[n], n = 1,… ,N, (1.22)

where {x[n]}N
n=1 are i.i.d. Gaussian random vectors, x[n] ∼  (𝟎, 𝜎2I) and 𝜎2 = 1.

The smoothness validation problem is formulated as the following composite
hypothesis testing problem:{

0∶ h(L) is a smooth graph filter
1∶ h(L) is a non-smooth graph filter.

(1.23)

It should be noted that since we are dealing with real data from WSNs, we cannot
presume knowledge of the graph filter, h(L). Thus, as an integral part of the



16 1 Graph Signal Processing in Wireless Sensor Networks

detection approach, we employ a data-driven approach to the estimation of the
graph filter. For the sake of simplicity, we assume that h(L) is a non-singular
matrix, and all the eigenvalues of L are distinct. These assumptions are chosen for
simplicity, and the proposed detector can be developed without them, as shown
in [Dabush and Routtenberg, 2023].

In order to solve the composite hypothesis testing problem in (1.23), we esti-
mate the graph filter frequency response, i.e. {h2(𝜆k), k = 1,… , ||}, from the
measurements, and use the condition in (1.21) in order to determine whether the
graph filter is smooth.

The log-likelihood function of the measurement model from (1.22) parametrized
by {h2(𝜆k) ∣ k = 1,… , ||} after removing constant terms is

log f (y; h2(L)) ∝ N
2

log(|h2(L)|) − 1
2

N∑
n=1

yT[n](h2(L))−1y[n], (1.24)

where | ⋅ | denotes the determinant of its argument matrix.
Based on (1.15), we replace h(L) with its SVD, Vdiag(h(𝝀))VT , in the

log-likelihood in (1.24). Accordingly, the Maximum Likelihood (ML) estimator
(see Chapter 7 in [Kay, 1993a]) is reduced to

ĥ2(𝝀) = arg max
h2(𝝀)∈ℝN

log f (y; h2(𝝀))

= arg max
h2(𝝀)∈ℝN

N
2

log
(|V(

diag(h2(𝝀))
)−1VT|)

− 1
2

N∑
n=1

yT[n]V
(
diag(h2(𝝀))−1)VTy[n],

(1.25)

where h(𝝀) = (h(𝜆1),… , h(𝜆||)). By using the GFT definition in (1.11) and the
fact that V is a unitary matrix, we can write (1.25) in the graph frequency domain
as

ĥ2(𝝀) = arg max
h2(𝝀)∈ℝN

N
2

||∑
k=1

log
((

h2(𝜆k)
)−1

)
− 1

2

||∑
k=1

(
h2(𝜆k)

)−1
N∑

n=1
ỹ2

k[n].

(1.26)

By equating the derivative of the log-likelihood function from (1.26), w.r.t. each of
the graph filter frequencies, h2(𝜆k), k = 1,… , ||, to zero, one obtains

ĥ2(𝜆k) =
1
N

N∑
n=1

ỹ2
k[n], k = 1,… , ||. (1.27)
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By substituting (1.27) in the condition for smooth graph filters in (1.21), one
obtains

r̂ = 𝜆−1
avg

∑||
k=1

∑N
n=1 𝜆kỹ2

k[n]∑||
k=1

∑N
n=1 ỹ2

k[n]
< 1. (1.28)

By replacing the order of summation in both the numerator and the denominator,
substituting (1.13) in the numerator and (1.11) in the denominator, and using the
unitary matrix property ||Vy||2 = ||y||2, one obtains

r̂ = 𝜆−1
a𝑣g

∑N
n=1 yT[n]Ly[n]∑N

n=1 ||y[n]||2 < 1. (1.29)

The detector in (1.29) is the sample mean of the GTV of the filtered signal y, w.r.t.
to the underlying graph, normalized by its sample variance and the average graph
frequency 𝜆a𝑣g. Thus, the proposed detector can be interpreted as an empirical
evaluation of the GTV of the output graph signal, y.

1.5 GSP-Based Signal Recovery in WSN Models
with Missing Data

Data loss is a frequent problem in WSNs that may be caused by a variety of
factors such as noise, collisions, unreliable links, and damage. Consequently,
many WSN applications operate under partial observation models [Kong et al.,
2013]. Several signal reconstruction techniques have been developed to address
this issue, including compressive-sensing-based methods [Kong et al., 2013],
K-nearest neighbors-based methods [Pan and Li, 2010], and spatial–temporal
imputation-based methods [Li and Parker, 2008]. In general, signal recovery from
inaccessible and/or corrupted measurements requires additional knowledge of
signal properties. To compensate for missing data over the graph, one can leverage
the properties of graph signals that are often bandlimited or smooth graph signals
[Chen et al., 2015a; Marques et al., 2015; Romero et al., 2016]. In this section, we
consider the latter approach and utilize the graph signal smoothness of signals
in WSN applications. It should be noted that the efficiency of the proposed
methods is influenced by the graph signal smoothness level of the application’s
signals.

We consider the following observation model:

y = 𝚽x + n, (1.30)

where 𝚽 ∈ ℝQ×|| represents a linear operation on the graph signal x, and n is
modeled by the Gaussian vector n ∼  (𝟎,R) ∈ ℝQ. Furthermore, it is assumed
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that the measurements in the set {Q∖} are the measurements missing. Thus, the
task is to recover the signal, x, based on the missing data model

y

= 𝚽

 ,x + n

, (1.31)

where 𝚽
 , is the submatrix of 𝚽 that contains only the rows associated with the

index set  .

1.5.1 Signal Recovery Approaches

Approach 1. Weighted Least Squares (WLS): A common approach for esti-
mating x based on the measurement model in (1.31) is by the WLS optimization
problem:

x̂WLS = arg min
x∈ℝ|| (y

−𝚽
 ,(L)x)TR−1(y


−𝚽

 ,(L)x)

=
(
𝚽

 ,(L)
)†y


,

(1.32)

where (⋅)† denotes the pseudo-inverse operator. However, this approach may
not be suitable for the partial observation model in (1.31). Specifically, when
the columns of 𝚽

 , become linearly dependent, it is required to incorporate
additional properties beyond the measurement model in (1.31) to achieve a
unique estimator of x.
Approach 2. WLS with GTV-based regularization: The recovery of smooth
graph signals by incorporating regularization terms has been well-studied in the
literature [Ortega et al., 2018; Puy and Pérez, 2018]. In particular, recovery with a
regularization using the Laplacian quadratic form has been used in various appli-
cations including image processing, data classification, and supervised learning on
graphs [Belkin et al., 2004; Wang and Zhang, 2006; Elmoataz et al., 2008; Cai et al.,
2010; Zheng et al., 2010]. This approach involves incorporating a constraint on the
GTV of the graph signal in the WLS problem in (1.32), which is formulated by

x̂GSP-WLS = arg min
x∈ℝ||

(
(y


−𝚽

 ,(L)x)TR−1(y

−𝚽

 ,(L)x)
)

such that xTL x ≤ 𝜀.
(1.33)

The parameter 𝜀 and the efficiency of the GSP-WLS estimation depend on
the smoothness properties of the signal that can be validated as discussed in
Section 1.4.

By using the Karush–Kuhn–Tucker (KKT) conditions, the minimization prob-
lem in (1.33) can be replaced by the following regularized optimization problem:

x̂GSP-WLS = arg min
x∈ℝ||

(
(y


−𝚽

 ,x)TR−1(y

−𝚽

 ,x) + 𝜇 xTL x
)
. (1.34)

The term xTLx is a regularization term that is based on the smoothness constraint
from (1.33). The parameter 𝜇 ≥ 0 is a Lagrange multiplier, which is a tuning
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parameter that replaces 𝜀. The GSP-WLS estimator from (1.34) is obtained by
equating the derivative of (1.34) w.r.t. x to zero, which results in [Wieringen, 2015]

x̂GSP-WLS =
(
𝚽T

 ,R−1𝚽
 , + 𝜇L

)−1𝚽T
 ,R−1y


. (1.35)

For an insufficiently measured system, the matrix 𝚽T
 ,R−1𝚽

 , is a singular
matrix. Thus, the addition of the term 𝜇L is essential for the numerical stability of
the proposed GSP-WLS estimator.
Approach 3. WLS with graph bandlimitness-based regularization: Another
GSP approach involves using the bandlimitness assumption in Definition 1.1.
Thus, in this case, we formulate the GLP-WLS estimator by incorporating the
graph-bandlimitness property in (1.14) as the constraint on the WLS problem in
(1.32) as follows:

x̂GLP−WLS = arg min
x∈ℝ|| (y

−𝚽
 ,(L)x)TR−1(y


−𝚽

 ,(L)x)

such that [VTx]k = 0, k = 𝛽 + 1,… , ||, (1.36)

where VTx is the graph spectral representation of x, as defined in (1.11). Due to
the constraint in (1.36), the estimated signal, x̂GLP-WLS, obtains nonzero elements
only in the graph frequencies {𝜆1,… , 𝜆𝛽} that are located in the lower regime of
the graph spectrum.

By substituting x = Ix = VVTx in (1.36), denoting𝚯 ≜ 𝚽
 ,V, and then placing

the constraint in the cost function, we obtain the following WLS problem:

̂̃xGLP-WLS
1∶𝛽 = arg min

x̃1∶𝛽∈ℝ𝛽
(y


−𝚯1∶𝛽 x̃1∶𝛽)TR−1(y


−𝚯1∶𝛽 x̃1∶𝛽)

= (𝚯T
1∶𝛽R−1𝚯1∶𝛽)−1𝚯1∶𝛽R−1y


,

(1.37)

where the submatrix 𝚯1∶𝛽 includes the rows in 𝚯 associated with the indices
1,… , 𝛽, and x̃1∶𝛽 includes the elements of x̃ in the positions 1,… , 𝛽. Now, by
setting ̂̃x𝛽+1∶|| = 𝟎, we solve (1.36) by x̂GLP-WLS = V ̂̃xGLP-WLS.

1.5.2 GSP-Based Sampling Policies

Managing energy consumption in WSNs is crucial, especially concerning sens-
ing and data forwarding tasks, as they significantly influence node lifespan and
network efficiency [Chiumento et al., 2019]. While improving sensor energy effi-
ciency or devising specialized radio protocols can help conserve energy, an equally
potent solution involves selective sensing in which sensors are activated only when
and where needed. In traditional DSP, downsampling involves reducing the num-
ber of samples of a time series. Similarly, in GSP, downsampling refers to sampling
a graph signal across a subset of nodes. By incorporating graph topology, addi-
tional information on how a signal propagates across vertices can be considered
in WSNs. This raises the question: What constitutes a good sampling subset, given
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limitations on bandwidth, power, and the number of sensors for the sampled graph
signal?

We consider a situation where the WSN operates with constrained sensing
resources, possibly due to limitations in energy and communication budgets.
In such instances, optimizing sensor placements becomes crucial, and various
criteria can guide this optimization process. Existing sampling policies include:

● Task-based sampling in which a sample allocation rule is designed for the
sensing model in (1.31) with the goal of minimizing the mean-squared-error
(MSE).

● Experimentally designed (E-design) sampling [Chen et al., 2015b] aims to min-
imize the worst-case errors by maximizing the smallest singular value of the
matrix VT

 ,
V

 ,
.

● A-optimal design (A-design) sampling [Chen et al., 2015b] aims to minimize the
average errors by seeking  , which minimizes the trace of the matrix inverse
Tr((VT

 ,
V

 ,
)−1).

● Cramér–Rao bound (CRB) minimization-based methods have been designed for
the general model discussed in (1.31). These methods are based on minimizing
the CRBs on the MSE performance (see, e.g. [Dabush et al., 2023; Routtenberg,
2021]).

These sampling policies address the challenge of optimizing sensor placements
or selecting a subset of activated sensors under resource constraints in WSNs.
The choice among these strategies depends on the specific objectives and criteria
relevant to the application scenario, providing flexibility in adapting to different
constraints and requirements.

1.6 GSP-Based Anomaly Detection for WSN

Detecting anomalies in WSNs is a critical task. These anomalies often emanate
from sensor malfunctions or disruptions in communication links, which may
potentially damage hardware and/or affect application performance [Rajasegarar
et al., 2008; Xie et al., 2011; Erhan et al., 2021]. Detecting these anomalies is
challenging, particularly when dealing with a large number of sensors in the
network and/or when anomalies are deliberately concealed.

In this section, we leverage smoothness and GLP signal properties in order to
detect anomalies. This approach has been presented in the context of temperature
sensors in Sandryhaila and Moura [2014], WSNs in Egilmez and Ortega [2014],
and detection of false data injection (FDI) attacks in power systems in Drayer
and Routtenberg [2019], Dabush and Routtenberg [2022], and Morgenstern et al.
[2024].
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1.6.1 Hypothesis Testing Problem

We consider the following hypothesis testing problem:{
0∶ z = x + n
1∶ z = x + a + n,

(1.38)

where the null hypothesis 0, indicates regular system operations, and 1, indi-
cates disruptive interference in the system operation. Here, the vector z represents
either sensor readings or their estimates. The system signal, x, is assumed to satisfy
local properties w.r.t. the graph. For example, the signal could be smooth, i.e. with
a small GTV as defined in (1.12), to be a GLP signal, or even bandlimited graph
signal as defined in Definition 1.1. The noise vector n is considered to be random.
The anomaly is modeled by the deterministic vector a, which is an arbitrary vector.
Hence, it is not considered smooth, low-pass, or bandlimited w.r.t. the graph.

1.6.2 Graph High-Pass Filter (GHPF)-Based Detection

As mentioned below (1.13), the smooth graph signal, x, can be considered as a
GLP signal. Thus, under the assumption that the influence of noise is limited, we
can use the following general detector:

‖‖‖h(L)z‖‖‖2 1

≷
0

𝛾, (1.39)

where 𝛾 is the detection threshold determined based on the tested WSN applica-
tion. Here, h(L) is a graph high-pass filter (GHPF) that preserves the energy at the
higher graph frequencies of its input, while reducing the content of the signal at
the lower graph frequency regime. This detector is based on the assumption that
the anomaly, a, is neither smooth nor small enough to be neglected, and thus, it
is expected to obtain energy in the higher graph frequencies. Consequently, it is
expected that under 1, the measurement signal, z, will obtain energy in higher
graph frequencies. Thus, as a result, it is expected that the l.h.s. of (1.39) will exceed
the threshold under hypothesis 1.

Examples of GHPFs include the ideal GHPF, which is defined by the graph fre-
quency response

hid(𝜆k) =
{

0 ≤ 𝜆cut
1 𝜆k > 𝜆cut

k = 1,… , ||, (1.40)

where 𝜆cut is the cutoff frequency. Another example is the GTV graph filter, which
is defined by hTV (L) = L0.5. By substituting this graph filter in (1.39), we obtain
that for this case the detector is reduced to

||hTV (L)z||2 = zTL0.5L0.5z = zTLz. (1.41)
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Thus, the GHPF detector in (1.39) is a generalization of the smoothness detector
that has been used in Sandryhaila and Moura [2013] and Drayer and Routtenberg
[2019].

1.6.3 Illustrative Example

In this example, our goal is to demonstrate the influence of a malfunction in one
sensor of a WSN on the measurements of a smooth graph signal. We consider the
graph in Figure 1.3b and define the following GLP signal in the graph frequency
domain: x̃ = {0.32, 0.28, 0.15, 0.01, 0.01, 0.01, 0, 0, 0, 0}.Thus, x̃ is a GLP signal and
a 𝛽-bandlimited graph signal, as defined in (1.14), with a cutoff frequency of 𝛽 = 6.
The signal in the node domain is computed by the inverse GFT in (1.11). We
model the anomaly by the additive vector a = {0, 0, 0, 0,−0.3, 0, 0, 0, 0, 0}, where
an anomaly is inserted at the fifth sensor.

In Figure 1.8, we present the signals x and x + a in both domains. First, it can be
seen that the differences between the signals are not clearly evident in the graph
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Figure 1.8 Results from the illustrative example in Section 1.6.3 showing the influence
of an additive anomaly, a, on a graph signal, x, presented in both the graph node and the
graph frequency domains. (a) x, TV(x) = 0.051, (b) x + a, TV(x + a) = 0.189, (c) x̃ = VT x,
and (d) x̃ + ã = VT (x + a).
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node domain while the GTVs TV(x) = 0.0212 and TV(x + a) = 0.2114 are
significantly different. Moreover, the addition of the anomaly results in abnormal
energy in the higher graph frequencies. Consequently, the detector in (1.39) is
suitable for detecting this anomaly.

1.7 GSP-Based Graph Topology Identification
for Modeling WSNs

In Section 1.2, several approaches based on GSP for modeling WSNs are presented.
These models rely on prior knowledge of certain factors such as the location
of the sensor nodes (i.e. the distance-based model in (1.2)), the correlation
between the sensor nodes (i.e. the correlation-based model in (1.3)), or structural
data (e.g. transportation networks and power systems). Unfortunately, this
prior information may be unavailable or unreliable in some cases. For instance,
the exact locations of some of the sensor nodes in a WSN may be unknown
[Boukerche et al., 2007]. Additionally, in most cases, the correlation between
the sensor nodes in the WSNs is unknown and must be estimated based on data
samples [Vuran et al., 2004]. Furthermore, in infrastructure networks, such as
power systems, the topology is subject to edge disconnections due to line outages
[Shaked and Routtenberg, 2021]. Therefore, there is a need for methods to validate
or estimate the underlying interactions in WSNs.

Graph topology inference approaches rely on algebraic and statistical methods.
Classic examples include correlation-based methods [Kolaczyk and Csárdi, 2014],
Graphical Lasso [Friedman et al., 2008], and GSP-based models [Kalofolias, 2016;
Egilmez et al., 2017; Segarra et al., 2017; Medvedovsky et al., 2024]. In this con-
text, GSP-based topology identification is vital for understanding and managing
complex systems. Topology identification has applications in diverse fields such
as gene regulatory, brain, power, and social networks [Giannakis et al., 2018].
Consequently, using GSP for topology identification in WSNs holds significant
promise for enhancing WSN applications.

A key method for topology identification is based on the estimation of the
graph Laplacian matrix of the graph, which captures the graph structure and
its fundamental qualities. As presented in Sections 1.3–1.6, the graph Laplacian
matrix is used in the spectral analysis of graph signals, graph filters, anomaly
detection, and signal sampling and recovery, and thus, its accurate estimation is
of great importance.

1.7.1 ML Estimation of the Graph Laplacian Matrix

In this section, we derive the general ML estimator under graph Laplacian con-
straints. These constraints can be implemented by requiring the ML estimator to
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belong to the set of Laplacian matrices for connected graphs, which can be defined
as [Ying et al., 2020b]

 =
{

L ∈ 
p
+ | Lk,m ≤ 0, ∀ k ≠ m, L𝟏 = 𝟎, rank(L) = ||} . (1.42)

where 
p
+ is the set of p × p symmetric positive semi-definite matrices. The graph

estimation problem is approached by formulating it as a Laplacian learning
problem based on a probabilistic graphical model [Banerjee et al., 2008; Koller
and Friedman, 2009]. Thus, we assume that we have i.i.d. data samples, x1,… , xn,
drawn from a zero-mean Gaussian distribution parametrized by a positive
semi-definite precision matrix, L, i.e. x ∼  (𝟎,L†). This defines an improper
Laplacian-constrained Gaussian Markov Random Field (LGMRF) model. The
ML estimator of L under this model can be obtained by solving the following
constrained minimization of the negative log-likelihood:

L̂ML = arg min
L∈

{
Tr(LS) − log |L|+} , (1.43)

where S ≜
1
n

∑n
i=1 xixT

i is the sample covariance matrix, Tr(⋅) denotes the trace
operator, and (⋅)+ denotes the pseudo-determinant. It should be noted that various
objective functions can be considered for topology identification under different
assumed models within the constrained setting of L ∈ . For example, in [Grotas
et al, 2019] and [Halihal and Routtenberg, 2022], the topology of a power system is
identified by solving the ML estimator of the Laplacian-constrained setting, where
the samples are modeled using power flow equations.

Sparsity, which plays an important role in high-dimensional learning, can
also be incorporated into the problem in (1.43). A sparse graph estimation
problem under the LGMRF model can be formulated by adding a sparse
penalty function to the estimator in (1.43). Specifically, selecting the penalty
function as |L|1,off =

∑
k≠m|Lk,m| yields the same objective function as the

well-known Graphical Lasso problem. However, due to the Laplacian con-
straints in (1.43), this penalty function is ineffective [Ying et al., 2020a].
Alternative approaches utilizing nonconvex penalties have been proposed
to address this issue, as discussed in Medvedovsky et al. [2024]. This result
highlights the fact that Laplacian-based GSP approaches are not merely
straightforward extensions of conventional methods, but require careful
consideration.

1.7.2 Topology Change Identification

Dynamic topology estimation, especially in WSNs with limited cooperation,
presents unique challenges. Advances such as those already in 5G technology
and those expected in 6G technology [Xia et al., 2020; Yeh et al., 2023] are making
WSNs increasingly crucial in many aspects, and understanding their structure
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has become a significant concern. A critical application is in the security context,
where comprehending the structure of adversary communication networks is
of paramount importance. Traditional methods, typically designed for static,
unchanging network structures, fall short in addressing the complexities of these
modern dynamic environments. In this section, we discuss the application of
detecting changes in the topology within dynamic settings.

Specifically, we consider the problem of identifying the underlying graph associ-
ated with a set of smooth graph signals {y[n]}N

n=1, obtained as outputs of a smooth
graph filter as defined in (1.22). The underlying graph can be either the original
graph, denoted as 0 = (, 𝜉0), or any graph from the set {d = (, 𝜉d)}D

d=1 that is
obtained by disconnecting a set d of edges from the original graph. This problem
is formulated in the following multiple hypothesis testing problem:{

0∶ y[n] = h(L(0))x[n]
d∶ y[n] = h(L(d))x[n], n = 1,… ,N,

(1.44)

for d = 1,… ,D, where under each hypothesis d, d = 0,… ,D, the graph filter
h(L(d)) is a smooth graph filter as in (1.20). Additionally, in each of the hypothesis
d, d = 1,… ,D, the graph Laplacian matrix is given by

L(d) = L(0) + Ed, Ed =
∑

(i,j)∈(d)

E(i,j), (1.45)

where the addition of E(i,j) to the graph Laplacian matrix models the removal of
the edge (i, j) from the graph. The signal-edge disconnection matrix E(i,j) is defined
elementwisely by

E(i,j)
k,m = L(0)

k,m ×
⎧⎪⎨⎪⎩
−1 {k = m = i} ∪ {k = m = j}
1 {k = i,m = j} ∪ {k = j,m = i}
0 otherwise.

(1.46)

For the sake of simplicity, we assume that under each alternative hypothesis d,
the graph filter that is used to generate the measurements is a non-singular matrix,
and the eigenvalues of the graph Laplacian matrix are distinct. In addition, we
assume that x[n] i.i.d.∼  (𝟎, I). While these assumptions are chosen for simplic-
ity, the problem in (1.44) can be solved without these assumptions, as shown in
[Shaked and Routtenberg, 2021].

We solve the multiple hypothesis testing problem in (1.44) with the ML decision
rule [Kay, 1993b]:

d̂ = arg max
0≤d≤D

log f (y;L(d))

= arg max
0≤d≤D

− 1
2

N∑
n=1

yT[n](h2(L(d)))−1y[n] + log(|h2(L(d))|), (1.47)
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where log(f (y;L(d))) are the log-likelihoods under each hypothesis d, d =
0,… ,D. The last equality results from substituting the distribution of the smooth
output graph signal y[n] i.i.d.∼  (𝟎, h2(L(d))) in the log-likelihood function, and
then removing constant terms.

In order to analyze the result in (1.47) in the graph frequency domain, based on
(1.10) and (1.15), we use the notation {𝜆(d)1 … 𝜆

(d)||}, V(d), and {h(𝜆(d)1 ),… , h(𝜆(d)||)}
for the graph frequencies, eigenvectors, and graph filter response, associated with
the graph Laplacian matrix L(d). In [Shaked and Routtenberg, 2021], it was shown
that (1.47) can be written as

d̂ = arg max
0≤d≤D

− 1
2

||∑
k=1

(h2(𝜆(d)k ))−1
N∑

n=1
(ỹ(d)k )2[n] +

||∑
k=1

log h2(𝜆(d)k ), (1.48)

where the kth element of the mean-squared GFT of the output graph signal is
defined as

𝜓
(d)
k ≜

1|| N∑
n=1

(ỹ(d)k )2[n]. (1.49)

By substituting (1.49) with (1.48), we obtain

d̂ = arg max
0≤d≤D

−
||∑
k=1

𝜓
(d)
k

h2(𝜆(d)k )
+

||∑
k=1

log h2(𝜆(d)k ). (1.50)

It can be seen from (1.50) that sufficient statistics for the ML decision rule are the
graph frequency energy levels {𝜓 (d)

k }||
k=1 , d = 0,… ,D. Additionally, for smooth

graph filters, as defined in Definition 1.4, the weights of the graph frequency
levels in (1.50), (1∕h2(𝜆(d)k )), amplify the influence of low graph-frequencies.
Therefore, the ML decision rule is governed by the low-graph frequencies, which
can be associated with the graph signal smoothness property.

1.8 Conclusions and Future Directions

In this chapter, we have outlined the fundamentals of GSP and showcased an
end-to-end GSP-based approach for signal processing in WSN applications. In
Section 1.2, we discussed the modeling of WSNs as undirected weighted graphs
and presented several models that consider features such as the distance and
correlation between the sensor nodes. In Section 1.3, we outlined fundamental
concepts in GSP, including graph signals, graph filters, graph signal properties
(e.g. graph signal smoothness), and graph spectral analysis. We then expanded
upon graph signal smoothness in Section 1.4. Specifically, we introduced the
concept of smooth graph filters, formulated a composite hypothesis testing prob-
lem differentiating between outputs of smooth or non-smooth graph filters, and
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derived a semi-parametric detector that solves this composite testing problem.
Then, we utilized the graph signal smoothness property for practical applications
in WSNs. In Section 1.5, we derived an ML-based estimator for signal recovery
in models with missing data. In Section 1.6, we used graph signal smoothness
for anomaly detection. Finally, in Section 1.7, we presented approaches for
identifying the topology of the WSN underlying graph.

The exploration of GSP within the context of WSNs has unveiled significant
insights into the effectiveness of GSP-based tools for the analysis and manipula-
tion of WSN data. As we chart the course for future directions, several promising
avenues merit attention. First, in addition to GSP, the advent of GNNs is expected
to provide useful tools for modeling intricate graph-structured data. Future
research should delve into synergies between GSP and GNNs to enhance the
understanding and processing capabilities of WSN data. Additionally, investi-
gating the synergy between GSP and the deployment of WSNs could lead to
optimized network architectures that leverage the inherent strengths of both.
Their considerations should incorporate practical aspects such as network layers
and physical attributes, including capacity and coverage. Specifically, utilizing
GSP for clustering within WSNs holds the potential to reveal hidden patterns and
improve overall network efficiency. Furthermore, to address inherent limitations
on energy resources, processing power, communication constraints, and compu-
tational costs [Egilmez and Ortega, 2014], it is crucial to develop distributed GSP
techniques to minimize communication costs, enhance energy and processing
efficiency, and adhere to the physical constraints of the system. Moreover, as the
field of GSP grows, it is becoming clear that methods for identifying topologies
need to be flexible in order to develop robust and efficient communication
systems. Thus, incorporating GSP tools for this task may enable a better under-
standing of the underlying network structure promoting better decision-making
in WSN applications. Finally, the analysis of specific structures inherent in
typical WSN networks, such as the star topology, hierarchical/tree topology,
and mesh topology (see Figure 1.9), may lay the basis to develop tailored GSP
techniques for optimized performance for diverse WSN architectures. In essence,
the integration of GSP into WSN research opens up a spectrum of possibilities,

(a) (b) (c)

Figure 1.9 Network topologies. (a) Star, (b) Mesh, and (c) Tree.
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and these future directions can further enhance the synergy between GSP and
WSNs, thereby advancing the capabilities and applications of this dynamic
field.
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2.1 Introduction

In many science, engineering, and social domains, the synergy between learning
and optimization stands as a fundamental pillar. Learning is a process where a
model or a system is trained using historical data to execute particular tasks. At
the core of learning methods (including machine learning and deep learning),
optimization techniques play a pivotal role where a certain loss or an objective
function is minimized in order to improve the performance of an underlying
model through iterative refinements. Most learning problems can be divided into
two main categories:

● Classification problems: These types of problems require learning model
parameters to distinguish between predefined categories (or classes). This is
typically achieved by training a model to learn some parameters that minimize
a specific loss function while considering realistic constraints; see, e.g., Forero
et al. [2010], Raja and Bajwa [2016], Safavi et al. [2018], and Reisizadeh et al.
[2020].

● Generative problems: This class of problems aims to learn the underlying dis-
tribution from a set of input data in order to generate (realistic) samples from
that distribution. For instance, in some scenarios, min–max optimization tech-
niques are applied to identify a saddle point while optimizing the loss functions
of generative adversarial networks (GANs): see, e.g. Goodfellow et al. [2014] and
Lin et al. [2020a,2020b].

Wireless Sensor Networks in Smart Environments: Enabling Digitalization from Fundamentals to Advanced
Solutions, First Edition. Edited by Domenico Ciuonzo and Pierluigi Salvo Rossi.
© 2025 The Institute of Electrical and Electronics Engineers, Inc. Published 2025 by John Wiley & Sons, Inc.
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Both classification and generative problems demand a significant amount of
data for effective model training. The widespread use of computational devices
(such as cellphones, Internet of Things (IoT) devices like sensors, and security
cameras) has given rise to a substantial surge in the amount of information
that is generated, leading to a notable rise in the applications that are built on
this information with the help of learning and optimization, Lee and Zavlanos
[2018], Safavi et al. [2018], Forero et al. [2010], Raja and Bajwa [2016], Yang et al.
[2019], Bottou et al. [2018], Benzi et al. [2005], Goodfellow et al. [2014], Sinha
et al. [2018], Lin et al. [2020a,2020b], and Liang and Stokes [2019].

For many such large-scale machine learning applications, data is often available
at several geographically distributed devices, which makes centralized compu-
tation and processing infeasible, e.g. due to privacy concerns, computational
limitations, and/or communication constraints. Consequently, there is an increas-
ing interest in developing distributed learning and optimization methods that
guarantee the same performance as centralized methods however by only utiliz-
ing the local datasets, [Xin et al., 2020]. This interest has led to the development
of various distributed optimization techniques that are designed to address these
challenges by enabling collaborative computation and communication among
the geographically distributed, computational nodes. The related distributed
optimization methods mainly follow two architectures based on the network
topology:

● Server-client networks (federated settings): In this architecture, the data
is divided among a network of clients, and the server coordinates the model
updates. Figure 2.1 shows a general example of the server–client network archi-
tecture.

● Peer-to-peer/mesh networks (distributed settings): In this architecture,
the nodes communicate only with their neighbors to exchange information and
update their local models. Figure 2.2 shows a general example of a peer-to-peer
network architecture.

Server

Clients

Figure 2.1
Server–client network
used for federated
learning problems.
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Figure 2.2 Peer-to-peer
network of computational nodes
over a strongly connected
directed graph.

Server–client networks or other well-connected topologies typically model
highly structured scenarios, such as data centers. In contrast, weakly connected
peer-to-peer/mesh networks are good candidates to model ad hoc WSNs, where
communication is more restricted and it is not possible to have a central coor-
dinator. Recently, learning over a peer-to-peer network architecture has been
described as near-shot learning, Qureshi [2024b]. In this chapter, we will focus
on such near-shot learning methods, i.e. distributed optimization methods over
strongly connected peer-to-peer networks.

In the remaining of this chapter, we will describe some foundational work on
distributed optimization methods in WSNs. In particular, Section 2.2 provides
some useful definitions and notations. Section 2.3 introduces the problem
formulation and Section 2.4 discusses the key optimization methods and their
extensions to restricted communication scenarios. Finally, Section 2.7 concludes
the chapter and discusses potential future directions.

2.1.1 Related Work

Distributed optimization has gained huge traction in recent years, Ram et al.
[2010], Lian et al. [2017], Chen and Sayed [2012], Xu et al. [2015], Zhu and
Martínez [2010], Lorenzo and Scutari [2016], Qu and Li [2017], Nedić et al.
[2017], Xin and Khan [2020], and Qureshi and Khan [2023b]. For smooth
objective functions, several gradient-based methods were proposed in Tsitsiklis
et al. [1986], Nedić and Ozdaglar [2009], Ram et al. [2010], Lian et al. [2017], and
Xin et al. [2020]. These methods require each node to compute the gradient of
its local loss function using its local data, update its local state estimates using
gradient descent, and then exchange information with the neighboring nodes.
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Notable works are Distributed Gradient Descent (DGD), Nedić and Ozdaglar
[2009], and Distributed Stochastic Gradient Descent (DSGD) Ram et al. [2010].
DGD employs a deterministic offline model assuming each node has access to the
entire local dataset. Every node computes the gradient for each update based on
the complete local dataset, which is computationally expensive and not feasible
in many practical applications. In contrast, DSGD is a stochastic variant that is
particularly beneficial for online and streaming data applications. DSGD exhibits
the same operation as DGD with the difference being that each node executes
local updates utilizing the stochastic gradient calculated by processing only a
subset of the local dataset.

The above-mentioned distributed optimization methods perform well for
distributed data settings but do not converge to the optimal solution of the
global problem. This, as we will explain later, is due to the difference in gradient
evaluations caused by the heterogeneous data distribution. In general, the
gradient evaluated at each node directs the state estimation vectors to move
towards a different direction as compared to the direction of the global gradient
(gradient with respect to the data possessed in centralized settings). For smooth
and strongly convex objective functions, this causes inexact linear convergence
of DGD and DSGD using a constant stepsize. Nedić and Ozdaglar [2009] propose
a method for exact convergence to the optimal solution using a decaying stepsize
but at a sublinear rate. Recent work proposed in, Di Lorenzo and Scutari [2015]
and Xin and Khan [2018] uses the gradient tracking technique to overcome the
problems caused by data heterogeneity. Each node possesses an additional gradi-
ent tracking state vector, which asymptotically converges to the global gradient.
Hence, each node updates its local state moving in the opposite direction of the
gradient tracking term, see Xin et al. [2020] for a detailed review. Among other
first-order gradient-based methods are Qureshi and Khan [2022], Xin et al. [2021],
Saadatniaki et al. [2020], and Assran et al. [2019]. Qureshi and Khan [2022] use
different variance reduction techniques to eliminate the variance caused by
stochastic gradients. Saadatniaki et al. [2020] and Assran et al. [2019] quantify
the performance of the above-mentioned methods under constrained scenarios,
i.e. when the communication between nodes is time varying, Saadatniaki et al.
[2020], when the nodes have different computational power, or when there are
communication bottlenecks, Assran et al. [2019]. To expand more on wireless
networks, we now explain some useful definitions.

2.2 Notations and Definitions

The sets of real numbers, rational numbers, and integers are denoted by ℝ, ℚ,
and ℤ, respectively. The symbols ℤ

≥0 (ℤ>0) represent the set of nonnegative
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(positive) integers. Similarly, ℤ
≤0 (ℤ<0) denote the sets of nonpositive (negative)

integers. Vectors are represented by lowercase letters, and matrices are denoted
by uppercase letters. For a matrix A ∈ ℝn×n, the element in the ith row and jth
column is denoted by Aij. The transpose of A is indicated by A⊤. The all-ones vector
of size n is denoted by 𝟏n, and the identity matrix is denoted by I (with dimensions
implied by the context).

2.2.1 Graph-Theoretic Notions

We now introduce fundamental graph theory concepts to analyze how infor-
mation flows among nodes in wireless networks. Let us consider a wireless
network consisting of n nodes (where n ≥ 2) that communicate exclusively with
their immediate neighbors. We assume that each node can directly transmit
information to some or all neighboring nodes, without necessarily being able
to receive information from them. Our network is modeled as a directed graph
(or digraph), denoted as d = ( , ). Within this directed graph d, the set of
nodes is defined as  = {𝑣1, 𝑣2,… , 𝑣n}, and its size is indicated as || = n. The
set of edges is specified as  ⊆  ×  − {(𝑣j, 𝑣j) |𝑣j ∈ } (excluding self-edges),
and its size is represented by m = ||. A directed edge from node 𝑣i to node 𝑣j
is denoted as mji ≜ (𝑣j, 𝑣i) ∈  , indicating that node 𝑣j can receive information
from node 𝑣i (but not the other way around). The set of nodes that can directly
transmit information to node 𝑣j is known as the in-neighbors of 𝑣j, denoted
by 

−
j = {𝑣i ∈  | (𝑣j, 𝑣i) ∈ }. The count of nodes in 

−
j is referred to as the

in-degree of 𝑣j, denoted as −
j = | −

j |. Similarly, the set of nodes that can directly
receive information from node 𝑣j is termed the out-neighbors of 𝑣j, represented
by 

+
j = {𝑣l ∈  | (𝑣l, 𝑣j) ∈ }. The number of nodes in 

+
j is the out-degree of

𝑣j, denoted by 
+
j = | +

j |. We assume that the given directed graph d = ( , ) is
strongly connected, ensuring the existence of a directed path from any node 𝑣i to 𝑣j
for all distinct nodes 𝑣j, 𝑣i ∈  . An undirected graph  implies bidirectional links
between each node and its neighbors, leading to a doubly stochastic weight matrix
representing the communication graph. Even with possible unidirectional links
among nodes of , the weight matrix could still be doubly stochastic, classifying
it as a weight-balanced graph. Additionally, the diameter D of a directed graph
d is defined as the length of the longest shortest path between any pair of nodes
𝑣i, 𝑣j ∈  in the network.

2.2.2 Summary of Variables

In this section, we provide a summary of useful variables essential for the devel-
opment of our results. Table 2.1 describes some important terms that are used
throughout the rest of the chapter.
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Table 2.1 Description of important variables.

Variables Description

l Loss function
fi Local cost function of node 𝑣i

∇fi Derivative of local cost function of node 𝑣i

F Global objective function
∇F Derivative of global objective function
x[k] State vector estimate at kth iteration
x[k]

i State vector estimate at kth iteration at node 𝑣i

Δ Quantization step size
D Digraph diameter
𝛼 Optimization step size
yi, zi Communication variables (or mass variables) of node 𝑣i

Mi,mi Voting variables of node 𝑣i

𝜀s Optimization error bound
cr Refinement constant of quantization level
𝛾𝛽 Optimization convergence time step
fi,j Decomposable local cost function of node 𝑣i

∇fi,j Derivative of decomposable local cost function of node 𝑣i

2.3 Problem Formulation

In this section, we formally describe the setup for distributed optimization prob-
lems over peer-to-peer networks. However, we first elaborate on the centralized
settings, where a single computational node possesses all the data. In most
learning and optimization problems, the goal is to find a model h(m, x) param-
eterized by x ∈ ℝp, which maps an input m ∈ ℝq to an output y ∈ ℝr . A loss
function l(h(m, x), y) is used to evaluate the performance of the optimizer in
estimating the model parameters x. Additionally, in practice, the (m, y) pairs
belong to some joint probability distribution (m, y). Thus, the optimization
problem is expressed as follows:

min
x

{
F(x) ∶= 𝔼(m,x)∼(m,x)l(h(m, x), y)

}
.

In most practical scenarios, we do not know the joint probability distribu-
tion (m, y) in which the (m, y) pairs belong. We assume that each pair (m, y) is
sampled from a large dataset {(mi, yi)}n

i=1 under i.i.d. conditions (independent
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and identically distributed). Therefore, we solve the empirical risk minimization
problem:

min
x

{
F(x) ∶= 1

n

n∑
i=1

li(hi(mi, x), yi)

}
. (2.1)

This finite-sum formulation encapsulates a wide range of learning problems.
For very large-scale problems, we often consider each li to be distributed over
a network of n computational nodes communicating over a strongly connected
directed graph with the global problem being to minimize the average of local costs
distributed over the network. Thus, in the distributed setting, the optimization
problem has the following form:

min
x

{
F(x) ∶= 1

n

n∑
i=1

li(hi(mi, x), yi) ∶=
1
n

n∑
i=1

fi(x)

}
, (2.2)

where fi(x) ∶ ℝp → ℝ is the cost function private to node 𝑣i. Additionally,
every node can only communicate with its neighbors. Therefore, unlike the
centralized settings, each node cannot directly evaluate the gradient of the global
cost (i.e. ∇F(x) ∶= ∇

(
1
n

∑n
i=1 fi(x)

)
, but it can only access its first-order oracle

(i.e. local cost fi(•) and local gradient ∇fi(•)). Considering this distributed set-
ting, in Sections 2.4 and 2.5, we describe various methods to solve distributed
optimization problems.

2.4 Distributed Optimization Methods

In this section, we will focus on first-order distributed optimization methods.
Before delving into the methods, we present some assumptions that are required
for analyzing their convergence.

Assumption 2.1 Communication among nodes occurs through a strongly con-
nected directed graph.

Assumption 2.2 Communication among nodes takes place over a weight-
balanced digraph. Let W ∈ ℝn×n represent the weight matrix of the underly-
ing communication graph. Then W is doubly stochastic, i.e. W𝟏n = 𝟏n and
W⊤𝟏n = 𝟏n.

Assumption 2.3 For each node 𝑣i, the local cost function fi is Li smooth and the
global cost function F is 𝜇-strongly convex. This implies that for every x, y ∈ ℝp
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● there exists a positive constant Li such that ∀i,||∇fi(y) − ∇fi(x)||2 ≤ Li||y − x||2, (2.3)

● there exists positive a constant 𝜇 such that

F(y) ≥ F(x) + ∇F(x)⊤(y − x) + 𝜇

2
||y − x||22. (2.4)

The assumptions mentioned above are common in the literature of distributed
optimization, [Qu and Li, 2017; Xin and Khan, 2018]. Assumption 2.1 is related to
the connectivity of network topology. It ensures that there are no disconnects in
the communication graph (i.e. each node is linked with every other node through
a maximum of n-hops and there are no isolated nodes). Assumption 2.3 governs
the behavior of the cost functions. Lipschitz-continuity guarantees that the func-
tion is smooth with a quadratic upper bound (2.3). Strong convexity, on the other
hand, ensures that the function is lower bounded by a quadratic and has a unique
minimum x∗ (2.4). It is noteworthy that both strong connectivity of the underlying
network and Assumption 2.3 are necessary for distributed optimization methods
to attain a linear convergence rate.1 A linear rate is often used in the literature on
optimization, [Nedić and Ozdaglar, 2009; Xin et al., 2020] to describe an exponen-
tially decaying term. Now, we describe the distributed implementation of gradient
descent.

2.4.1 Distributed Gradient Descent

Minimizing a cost function through gradient-based methods is well-established
in research, with gradient descent being extensively explored in the literature,
see Bottou et al. [2018] for a detailed report on optimization methods. In cen-
tralized settings, the algorithm commences by initializing with a random state
vector x[0] ∈ ℝp. Subsequently, for all k ≥ 0, it updates the state vector according
to the following rule:

x[k+1] = x[k] − ∇F(x[k]).

In distributed settings, the local cost functions are private to each node. Therefore,
the nodes can only compute their local gradients ∇fi(x) and use them to evaluate
their local state vectors xi ∈ ℝp. The DGD is formally defined in Algorithm 2.1.

During the operation of Algorithm 2.1, nodes communicate over a network
modeled as a strongly connected and weight-balanced digraph W = {𝑤ir}n

r=1.
Each node i initializes with a random state vector x[0]i ∈ ℝp. At iteration k, every

1 Note that a linear rate is essentially an exponential decay of the error, which is linear on the
log-scale.
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Algorithm 2.1 Distributed Gradient Descent (DGD)
Input: x[0]i ∈ ℝp, 𝛼 > 0, {𝑤ir}n

r=1
Iteration: For k = 0, 1, 2,… ,K, each node 𝑣i ∈  does:

1. x[k+1]
i =

∑n
i=1 𝑤ir

(
x[k]r − 𝛼k∇fr(x

[k]
r )

)
Output: Each node 𝑣i ∈  estimates x∗ by x[K]

i to solve (2.2)

node computes its local gradient ∇fi(x
[k]
i ) and then takes a step in the negative

direction of that gradient with a step-size 𝛼k > 0. Then each node updates its next
state estimate x[k+1]

i by sharing these updated states
(

x[k]i − 𝛼k∇fi(x
[k]
i )

)
with its

neighbors and summing them up according to the weights {𝑤ir}n
r=1.

In the following theorem, we describe the main convergence result for
Algorithm 2.1 under certain assumptions. The formal proof can be found in Nedić
and Ozdaglar [2009].

Theorem 2.1 Nedić and Ozdaglar [2009]. Consider the problem in (2.2) under
Assumptions 2.2 and 2.3. For a small enough constant step-size 𝛼k = 𝛼 > 0,
Algorithm 2.1 (DGD) linearly converges to an error-ball around the optimal
solution x∗.

In Theorem 2.1, it is shown that for a constant step-size 𝛼 > 0, Algorithm 2.1
converges in a linear fashion but the convergence is inexact (i.e. it does not
evaluate the exact optimal solution). It is important to note that Algorithm 2.1
does not converge to the optimal solution because of local versus global cost gaps
(i.e. ||∇F − ∇fi|| ≠ 0 in general). Therefore, at each step k, the local gradient ∇fi
directs the state estimate x[k]i toward its local minimum, which, in general, is not
the global minimum (except if all the local cost functions are the same). These cost
gaps arise due to the heterogeneous data distribution between different nodes,
a common characteristic in WSNs. Section 2.5 describes a gradient tracking
scheme, Di Lorenzo and Scutari [2015] and Xin and Khan [2018], that can be used
to overcome this dissimilarity. Next, we provide a useful theorem to establish the
conditions for convergence of DGD to the optimal solution.

Theorem 2.2 Nedić and Ozdaglar [2009]. Consider the problem in (2.2) under
Assumptions 2.2 and 2.3. For a decaying step-size 𝛼k ∼ 

(
1
k

)
, Algorithm 2.1

(DGD) convergences to the optimal solution at a sublinear rate.

The proof of Theorem 2.2 can be found in Nedić and Ozdaglar [2009]. Another
limitation of Algorithm 2.1 (DGD) is that it requires the network topology to be
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weight-balanced. Therefore, we need to ensure that the communication between
the nodes is either bidirectional or the corresponding weight matrix (that models
the communication network) is doubly stochastic. This condition is practically
hard to meet due to bandwidth limitations or the nature of links between sensors.
Thus, for a more general class of networks (directed), DGD is not applicable. In
Section 2.5, we provide some useful extensions of DGD designed to remove various
practical limitations.

2.5 Extensions of DGD

In this section, we discuss several practical aspects of interest encountered by
real-life applications and provide some useful extensions of DGD.

2.5.1 Extension to Directed Communication

Let us now consider the case where nodes communicate over a network mod-
eled as a strongly connected directed graph (e.g. a wireless sensor network, WSN).
The weight matrix describing the communication network is either row or col-
umn stochastic, [Nedić and Olshevsky, 2016; Xin et al., 2019]. We consider the
case when B = {bij} ∈ ℝn×n is primitive and column stochastic. In this case, the
extension of DGD can be written as:

x[k+1]
i =

n∑
r=1

bir

(
x[k]r − 𝛼∇fr(x

[k]
r )

)
.

For 𝛼 = 0, the above iterations do not converge to the average 1
n

∑n
i=1 x[k]r because

the right eigenvector (let us call it 𝝅B) corresponding to the eigenvalue that is equal
to 1 is not 𝟏n. It can be verified that 𝟏⊤n B = 𝟏n, B𝝅B = 𝝅B, and limk→∞Bk = 𝝅B𝟏⊤n .
Therefore, each node converges to

x[k]i → [𝝅B]i

n∑
r=1

x[k]r ,

where [𝝅B]i is the ith element of vector 𝝅B. To cater this weighted sum, we would
like to divide each x[k]i with corresponding [𝝅B]i so we can get

x[k]i

n[𝝅B]i
→

[𝝅B]i

n[𝝅B]i

n∑
r=1

x[k]r .

However, nodes do not have the knowledge of 𝝅B vector. Push-sum [Hadjicostis
and Charalambous, 2014 and Nedić and Olshevsky, 2016] is a method that can be
used to allow each node to iteratively evaluate [𝝅B]i locally.
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The second error stems from the local versus global cost gaps for heterogeneous
data distributions. We note that unless data distribution is homogeneous, the
state estimate evaluated at each node is directed toward an inexact solution
because ∇fi ≠ ∇F. This can be dealt with, using a gradient tracking scheme
described below:

t[k+1]
i =

n∑
i=1

bir

(
t[k]i + ∇fr(x

[k+1]
r ) − ∇fr(x

[k]
r )

)
, ∀k > 0.

It can be verified that when t[0]i = ∇fi(x
[k]
i ), t[0]i → ∇F(x[k]i ), see Di Lorenzo and

Scutari [2015] and Xin and Khan [2018] for more details. Hence, the local ver-
sus global cost dissimilarity is removed and the state estimate evaluated at each
node converges to the optimal solution x∗.

A distributed optimization method that relies on push-sum consensus to deal
with the asymmetry caused by directed communication and a global gradient
tracking scheme is called accelerated distributed directed optimization method
(ADD-OPT) and is formally defined in Algorithm 2.2.

Algorithm 2.2 Accelerated Distributed Directed Optimization (ADD-OPT)
Input: x[0]i = z[0]i ∈ ℝp, y[0]i = 1, t[0]i = ∇fi(z

[0]
i ), 𝛼 > 0, {bir}n

r=1
Iteration: For k = 0, 1, 2,… ,K, each node 𝑣i ∈  does:

1. x[k+1]
i =

∑n
i=1 bir

(
x[k]r − 𝛼t[k]r

)
2. y[k+1]

i =
∑n

i=1 biry[k]r

3. z[k+1]
i = x[k]i ∕y[k]i

4. t[k+1]
i =

∑n
i=1 bir

(
t[k]i + ∇fr(z

[k+1]
r ) − ∇fr(z

[k]
r )

)
Output: Each node 𝑣i ∈  estimates x∗ by z[K]

i to solve (2.2)

The parameter estimate at each node x[0]i is initialized randomly. An additional
variable y[0]i is used to help estimate the left eigenvector of the weight matrix. It
can be verified that y[k+1]

i =
∑n

i=1 biry[k]r → n[𝝅B]i at each node because limk→∞Bk =
𝝅B𝟏⊤n . Therefore, the effect of directed communication is balanced out using these
extra iterations. Furthermore, the gradient tracking term converges to the global
gradient, i.e. t[k]i → ∇F(z[k]i ) at each node. This ensures convergence of each state
estimate to the exact solution, i.e. zi → x∗. We now describe the main convergence
result for Algorithm 2.2.

Theorem 2.3 Xi et al. [2017]. Consider the problem in (2.2) under Assump-
tions 2.1 and 2.3. For a small enough constant step-size 𝛼 > 0, Algorithm 2.2
(ADD-OPT) linearly converges to the optimal solution x∗ of F.
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Figure 2.3 Performance results of ADD-OPT (Algorithm 2.2). Source: Adapted from
[Xi et al., 2017].

Theorem 2.3 highlights the convergence properties of ADD-OPT method.
It states the conditions under which linear convergence is achieved while the
underlying communication graph is directed (can have unidirectional links) and
strongly connected. The formal proof can be found in Xi et al. [2017].

In Figure 2.3, we present the performance results for ADD-OPT (Algorithm 2.2)
over a randomly generated directed graph with 16 nodes. The network aims to
solve a logistic regression problem for classifying images from MNIST dataset by
minimizing the global cost F. Each node 𝑣i possesses a local cost fi and private
dataset. To evaluate the performance of ADD-OPT, we evaluate the error e[k] =∑n

i=1 ||z[k]i − x∗||. Figure 2.3 shows the linear convergence of ADD-OPT to the opti-
mal solution x∗ at each node, which aligns with Theorem 2.3, see Qureshi [2020]
for complete code.

2.5.2 Operation Over Wireless Networks

Wireless communication networks play a crucial role in distributed network con-
trol systems. By their very nature, these networks lack a physical infrastructure.
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This allows for their deployment in scenarios where fixed infrastructure is
unavailable, making them highly versatile and attractive for various applications,
including military, civil, industrial, and environmental monitoring in challenging
environments. However, it is essential to acknowledge that wireless networks
come with inherent limitations. These limitations rely on various factors such
as e.g. packet-dropping communication links, synchronicity between the net-
work components, bandwidth-constrained communication channels, and noisy
communication channels. In Section 2.5.2.1, we focus on the specific challenges
posed by bandwidth-constrained channels and noisy communication channels.
The topics of packet-dropping communication links and synchronicity between
network components will be discussed toward the conclusion of this section,
providing a comprehensive understanding of the inherent limitations that they
impose in wireless communication networks for distributed control systems.

2.5.2.1 Quantized Communication
A popular technique in wireless networks to address the challenges of limited
bandwidth and noisy channels is quantization. Quantization is a technique to
reduce the amount of information transmitted by encoding a continuous signal
into a discrete signal, [Rabbat and Nowak, 2005]. This technique significantly
reduces the required bandwidth for communication among agents. Some of the
most common quantization techniques are uniform, asymmetric, and logarithmic
quantization, [Wei et al., 2019]. For developing our results in this chapter, we rely
on asymmetric quantization. Asymmetric quantizers are defined as

qa
Δ(𝜉) =

⌊
𝜉

Δ

⌋
, (2.5)

where 𝜉 ∈ ℝ represents the input value for quantization, qa
Δ(𝜉) ∈ ℚ denotes the

quantized form of 𝜉, and Δ ∈ ℚ indicates the quantization step size. Note that
even though for the development of our results, we will utilize the asymmetric
quantization technique, our results can also be extended to different quantization
techniques (e.g. uniform or logarithmic).

2.5.2.2 Distributed Gradient Descent with Quantized Communication
We now present a distributed optimization algorithm for the case where nodes
exchange quantized valued messages. Before presenting our algorithm, we make
the following assumption.

Assumption 2.4 Each node 𝑣j ∈  possesses knowledge of the network’s diam-
eter D or an upper bound D′ (where D′ ≥ D), as well as a common quantization
level Δ.
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Assumption 2.4 facilitates node coordination. In particular, with awareness
of the network diameter D, each node can determine when every other node in
the network has improved its estimation of the optimal solution. Moreover, the
shared understanding of a common quantization level Δ enables nodes to trans-
mit quantized messages to their neighbors, ensuring efficient communication
with consistent precision.

Algorithm 2.3 Distributed gradient descent with quantized communication
Input: A strongly connected digraph  with n = || nodes and m = || edges.
Static step-size 𝛼 ∈ ℝ, digraph diameter D, initial value x[0]j , local cost function fj,
quantization level Δ ∈ ℚ, for every node 𝑣j ∈ 

Iteration: For k = 0, 1, 2,… ,K, each node 𝑣j ∈  does:

1. x
[k+ 1

2
]

j = x[k]j − 𝛼∇fj(x
[k]
j )

2. x[k+1]
j = Algorithm 2.3a(x

[k+ 1
2
]

j ,D,Δ )

Output: Each node 𝑣j ∈  estimates x∗ by x[K]
i to solve (2.2)

The intuition behind Algorithm 2.3 (QuAGD) is as follows. Initially, each node
holds an approximation of the optimal solution and the specified quantization
level. At each time step k, every node updates its estimate of the optimal solu-
tion through gradient descent towards the direction opposite to its gradient.
Subsequently, each node updates its solution estimate using Algorithm 2.3a. More
specifically, Algorithm 2.3a enables nodes to compute the quantized average
of each node’s estimate in finite time by exchanging and processing quantized
messages, with precision determined by the quantization level. The intuition
behind FAQuA is elaborated later.

The intuition behind Algorithm 2.3a (FAQuA) is as follows. Initially, each node
𝑣j quantizes its state. Subsequently, at each time step 𝜆, node 𝑣j updates its state
variables to match its mass variables and divides yj[𝜆] into zj[𝜆] equal parts (some
parts may have slightly higher values than others). It selects the part with the min-
imum value and transmits it to itself. Then sends the remaining parts to randomly
chosen out-neighbors or to itself. After receiving messages from its neighbors, it
combines these messages with the stored ones. For every D time steps, a max and
min consensus operation is carried out. If the termination condition is met, the
solution is adjusted based on the quantization level.

The convergence of Algorithm 2.3 is analyzed via the following theorem.
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Algorithm 2.3a Finite time quantized coordination

Input: x
[k+ 1

2
]

i ,D,Δ
Initialization: Each node 𝑣i ∈  does the following:

1. Assigns probability bli to each out-neighbor 𝑣l ∈ 
+
i ∪ {𝑣i}, as follows:

bli =

{ 1
1++

i
, if l = i or 𝑣l ∈ 

+
i ,

0, if l ≠ i and 𝑣l ∉ 
+
i

2. sets zi = 2, yi = 2 qa
Δ(x

[k+ 1
2
]

i )

Iteration: For 𝜆 = 1, 2,… , each node 𝑣i ∈  , does:

1. if 𝜆 mod (D) = 1 then Mi = ⌈yi∕zi⌉, mi = ⌊yi∕zi⌋
2. broadcasts Mi, mi to every 𝑣l ∈ 

+
i ; receives Mj, mj from every 𝑣j ∈ 

−
i ;

sets Mi = max𝑣j∈ −
i ∪{𝑣i} Mj,

mi = min𝑣j∈ −
i ∪{𝑣i} mj

3. sets cz
i = zi;

4. while cz
i > 1 do

4.1. cy
i = ⌊yi ∕ zi⌋

4.2. sets yi = yi − cy
i , zi = zi − 1, and cz

i = cz
i − 1

4.3. transmits cy
i to randomly chosen out-neighbor 𝑣l ∈ 

+
i ∪ {𝑣i} according

to bli
4.4. receives cy

j from 𝑣j ∈ 
−
i and sets

yi = yi +
n∑

j=1
𝑤

[r]
𝜆,ij cy

j , (2.6)

zi = zi +
n∑

j=1
𝑤

[r]
𝜆,ij, (2.7)

where 𝑤[r]
𝜆,ij = 1 when node 𝑣i receives cy

i , 1 from 𝑣j at time step 𝜆 (other-
wise 𝑤[r]

𝜆,ij = 0 and 𝑣i receives no message at time step 𝜆 from 𝑣j)
5. if 𝜆 mod D = 0 and Mi − mi ≤ 1 then sets x[k+1]

i = miΔ and stops operation

Output: x[k+1]
i
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Theorem 2.4 When the step-size 𝛼 satisfies 𝛼 ∈ ( n(𝜇+L)
4𝜇L

,
2n
𝜇+L

) and 𝛿 ∈
(0, n[4𝛼𝜇L−n(𝜇+L)]

2𝛼[n(𝜇+L)−2𝛼𝜇L]
), where L =

∑n
i=1 Li, 𝜇 =

∑n
i=1 𝜇i, Algorithm 2.3 generates a

sequence of points {x[k]} (i.e. the variable x[k]i of each node 𝑣i ∈ ) which satisfy

||x̂[k+1] − x∗||2 < 𝜗||x̂[k] − x∗||2 + (Δ2), (2.8)

where Δ is the quantizer and

𝜗 ∶=2(1 + 𝛼𝛿

n
)(1 − 2𝛼𝜇L

n(𝜇 + L)
) ∈ (0, 1), (2.9a)

(Δ2) =(8 + 32𝛼̂2L2 + 32𝛼̂L2

𝛿
)Δ2. (2.9b)

Proof: Full proof is provided in Rikos et al. [2023b, Theorem 1]. ◽

In Figure 2.4, we present a performance comparison of Algorithm 2.3 at var-
ious quantization levels with the works by Jiang and Charalambous [2022] and
Khatana et al. [2020]. The logarithmic plot shows the error e[k] plotted against the
number of iterations. This error, defined as

e[k] =

√√√√√ n∑
j=1

(x[k]j − x∗)2

(x[0]j − x∗)2
, (2.10)

is calculated with respect to the optimal solution x∗ of the optimization problem
(2.2). Our findings indicate that Algorithm 2.3 performs similarly to Khatana
et al. [2020], especially when the quantization level matches the predefined
tolerance value 𝜌 (refer to Khatana et al. [2020]). Our proposed algorithm
utilizes quantized values, making it suitable for channels with limited or finite
capacity. Moreover, Algorithm 2.3 demonstrates comparable performance to
Jiang and Charalambous [2022], even in cases where the results by Jiang and
Charalambous [2022] do not consist of an error floor. It is important to note that
Algorithm 2.3 can approximate the optimal solution with accuracy based on
the chosen quantization level. Refining the quantization level enables nodes to
achieve a more precise approximation of the optimal solution. In contrast, the
approach in Jiang and Charalambous [2022] involves constructing the Hankel
matrix and performing additional computations when the matrix loses rank,
requiring exact values from each node and implying nodes exchanging messages
of infinite capacity. Therefore, the key advantage of Algorithm 2.3 over Jiang and
Charalambous [2022] is that nodes operate with quantized values, while in Jiang
and Charalambous [2022], nodes exchange values of infinite precision.
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Jiang and Charalambous [2022], α = 0.12

Khatana et al. [2020], α = 0.12, ρ = 0.01

Khatana et al. [2020], α = 0.12, ρ = 0.001

Khatana et al. [2020], α = 0.12, ρ = 0.0001

Algorithm 2.3, α = 0.12, Δ = 0.01

Algorithm 2.3, α = 0.12, Δ = 0.001

Algorithm 2.3, α = 0.12, Δ = 0.0001

Figure 2.4 Comparison of Algorithm 2.3 for different quantization levels. Source: Jiang
and Charalambous [2022] and Khatana et al. [2020].

2.5.2.3 Enhancing Accuracy of Optimal Solution
During the execution of Algorithm 2.3, the term (Δ2) in (2.11) arises due to
quantized communication between nodes, impacting the precision of the optimal
solution. Determining the appropriate quantization level poses a challenge: if too
coarse, the optimization solution may have an unacceptably large error floor; if
too fine, it may lead to increased communication delays and packet losses. Since
the exact solution is unknown a priori, selecting an optimal quantization level
is challenging. Our idea is to build on Algorithm 2.3 and refine the quantization
interval based on the error floors resulting from different quantization intervals.
Specifically, by comparing solutions across various quantization intervals, we
iteratively adjust the interval. If the solutions surpass a specified threshold, we
further refine the quantization interval; otherwise, we terminate the operation.
While exact accuracy cannot be guaranteed, we are able to reach a desired level
of accuracy by selecting an appropriate threshold.

The idea behind Algorithm 2.4 is as follows. At each iteration k, nodes update
their solution estimate through a gradient descent step. Then, they implement a
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Algorithm 2.4 Gradient descent with zoomed quantized communication
Input: Strongly connected directed graphwith n = ||nodes and m = || edges.
Static step-size 𝛼 ∈ ℝ, digraph diameter D, initial value x[0]i , local cost function fi,
error bound 𝜀s, quantization level Δ ∈ ℚ, refinement constant cr ∈ ℕ, for every
node 𝑣j ∈  . Assumptions 2.3, 2.4 hold.
Initialization: Each node 𝑣i ∈  sets indi = 0, 𝛽 = indi, Si = {0}.
Iteration: For k = 0, 1, 2,… ,K, each node 𝑣i ∈  does the following:

1. x
[k+ 1

2
]

i = x[k]i − 𝛼𝛻fi(x
[k]
i )

2. x[k+1]
i = Algorithm 2.3a(x

[k+ 1
2
]

i ,D,Δ )
3. if x[k+1]

i = x[k]i , then
3a. set indi = indi + 1, 𝛽 = indi, 𝛾𝛽 = k
3b. set Si = Si ∪ {𝛾𝛽}
3c. if ‖fi(x

[𝛾𝛽−1]
i ) − fi(x

[𝛾𝛽 ]
i )‖ ≤ 𝜀s, then set voti = 0

• else set voti = 1
3d. flagi = max - Consensus (voti)
3e. if flagi = 0 then terminate operation
• else set Δ = Δ∕cr and go to Step 1

Output: Each node 𝑣i ∈  estimates x∗ by x[K]
i to solve (2.2)

finite-time quantized coordination algorithm (Algorithm 2.3a). When the nodes
converge to a vicinity of the optimal solution (indicating convergence at the cur-
rent quantization level), they store the time step. Subsequently, they assess if the
difference in computed optimal solution values between the current and previous
convergence instances falls below a threshold 𝜀s. Based on this difference, nodes
determine a voting variable (either 0 or 1). A max-consensus is then performed to
collectively decide on whether to proceed or halt the execution of Algorithm 2.4.
If a unanimous agreement is reached among all nodes that the optimal solution
values from the current and previous convergence instances are sufficiently close,
the operation ceases. However, if there is discord, nodes adjust the quantization
level and repeat the process.

Theorem 2.5 When the step-size 𝛼 satisfies 𝛼 ∈ ( n(𝜇+L)
4𝜇L

,
2n
𝜇+L

) and 𝛿 ∈
(0, n[4𝛼𝜇L−n(𝜇+L)]

2𝛼[n(𝜇+L)−2𝛼𝜇L]
), where L = max{Li}, 𝜇 = min{𝜇i}, Algorithm 2.4 gener-

ates a sequence of points {x[k]} (i.e. the variable x[k]i of each node 𝑣i ∈ ), which
satisfies

||x̂[k+1] − x∗||2 < 𝜗||x̂[k] − x∗||2 + (Δ2), (2.11)
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where Δ is the quantizer and

𝜗 ∶=2
(

1 + 𝛼𝛿

n

)(
1 − 2𝛼𝜇L

n(𝜇 + L)

)
∈ (0, 1), (2.12a)

(Δ2) =
(

8 + 32n2𝛼̂2L2 + 32n2𝛼̂L2

𝛿

)
Δ2. (2.12b)

Proof: The proof is a direct extension of the proof for Theorem 2.4, with the key
distinction being the restart of the process as outlined in iteration step (3e) of
Algorithm 2.4. ◽

In Figure 2.5, we display the performance of our algorithm on a randomly
generated directed graph with 20 nodes. Each node 𝑣i is characterized by param-
eters such as 𝛼 = 0.12, initial values x[0]i ∈ [1, 5], threshold 𝜀s = 0.003, step size
Δ = 0.001, and a constant cr = 10. The error e[k] is depicted on a logarithmic scale
against the number of iterations in the same figure. This error, defined by the
equation

e[k] =

√√√√√ n∑
j=1

(x[k]j − x∗)2

(x[0]j − x∗)2
, (2.13)
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Figure 2.5 Execution of Algorithm 2.4 on a random directed graph consisting of 20
nodes.
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is measured concerning the optimal solution x∗ of the optimization problem (2.2).
The outcomes showcase the algorithm successfully converging to the optimal
solution. Specifically, let us focus at time steps k = 13, 14, and k = 21, 22. During
k = 13, 14, the condition in Iteration Step 3 holds (i.e. x[13]

i = x[14]
i for every

node 𝑣i ∈ ), and e[13] = e[14]. Consequently, by time Step 14, nodes evaluate
the collective improvement of their local cost functions (Iteration Step 3c).
Since this criterion is not met for at least one node, they choose to adjust the
quantization level by setting Δ = Δ∕10 = 0.0001 and continue Algorithm 2.4.
Between time steps k = 14, ..., 21, nodes achieve a more accurate approximation
of the optimal solution, with the precision dependent on the quantization level as
per Theorem 2.5. At time steps k = 21, 22, the condition in Iteration Step 3 is met
again. However, by time Step 22, the overall improvement in each node’s local
cost function is below the specified threshold 𝜀s (i.e. ||fi(x

[14]
i ) − fi(x

[22]
i )|| ≤ 𝜀s) for

all nodes 𝑣i ∈  (see Iteration Step 3c). Consequently, nodes decide to conclude
the operation at time step k = 22 (Iteration Step 3e). It should be noted that
choosing a smaller 𝜀s may prompt nodes to further refine the quantization level,
allowing for an even more precise approximation of the optimal solution.

2.5.3 Stochastic Implementation

We now describe a stochastic extension of DGD, which is very useful for large
local datasets. In general, DGD requires every node to evaluate the full batch
gradient at each iteration to update the local state estimates. However, this process
becomes computationally demanding with large local datasets. Therefore, when
the local cost fi at node 𝑣i can be further decomposable into mi component cost
functions fi =

∑mi
j=1 fi,j, stochastic gradients ∇fi,s[k]i

are often used (where s[k]i is
chosen uniformly at random from the set {1,… ,mi} at each iteration k). We note
that stochastic gradients are assumed to have bounded variance, i.e. ∀i, k,

𝔼s[k]i

[||∇fi,s[k]i
(x[k]

i ) − ∇fi(x
[k]
i )||22 | x[k]

i

]
≤ 𝜎2,

which leads to inexact convergence. However, SAGA-based variance reduction
technique can be used to eliminate this error and estimate the exact local gradient
while evaluating only the stochastic local gradients ∇fi,s[k]i

at each iteration.
Algorithm 2.5 describes a distributed optimization method, which integrates

node-level variance reduction to eliminate the uncertainty introduced by stochas-
tic gradients, network-level gradient tracking to tackle the distributed nature of
the data, and push-sum consensus to address directed information exchange.
Similar to ADD-OPT (Algorithm 2.2), the state variables are randomly initialized.
However, Push-SAGA maintains the gradient table {∇fi,j}

mi
j=1 at each node 𝑣i to

store the component gradients.
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Algorithm 2.5 Push-SAGA
Input: x[0]i = z[0]i ∈ ℝp, y[0]i = 1, t[0]i = g[0]i = ∇fi(z

[0]
r ), 𝛼 > 0,

{bir}n
r=1, {∇fi,j(z

[0]
i )}mi

j=1, {h[1]
i,j = z[0]i }mi

j=1.
Iteration: For k = 0, 1, 2,… ,K, each node 𝑣i ∈  does the following:

1. x[k+1]
i =

∑n
i=1 bir

(
x[k]r − 𝛼t[k]i

)
2. y[k+1]

i =
∑n

i=1 biry[k]r

3. z[k+1]
i = x[k+1]

i ∕y[k+1]
i

4. Select s[k+1]
i uniformly at random from the set {1, · · · ,mi},

5. g[k+1]
i = ∇fi,s[k+1]

i
(z[k+1]

i ) − ∇fi,s[k+1]
i

(h[k+1]
i,s[k+1]

i

) + 1
mi

∑mi
j=1 ∇fi,j(h

[k+1]
i,j )

6. ∇fi,s[k+1]
i

(z[k+1]
i ) = ∇fi,s[k+1]

i
(h[k+1]

i,s[k+1]
i

)

7. t[k+1]
i =

∑n
i=1 bir

(
t[k]i + g[k+1]

r − g[k]r

)
8. If j = s[k+1]

i , then h[k+2]
i,j = z[k+1]

i , else h[k+2]
i,j = h[k+1]

i,j
9. end if

Output: Each node 𝑣i ∈  estimates x∗ by z[K]
i to solve (2.2)

At every iteration k, each node 𝑣i first computes an ADD-OPT-type iterate z[k]i
using push-sum correction. We note that the descent direction in the x[k]

i -update
(and thus in the z[k]i -update) is t[k]i , which is the (stochastic) global gradient tracker.
Subsequently, node 𝑣i generates a random index s[k]i and evaluates the SAGA-based
gradient estimator g[k]i using the current iterate iterate z[k]i and the elements from
the gradient table. The gradient table is updated only at the s[k]i -th element, while
the other entries remain unchanged. Finally, these estimators g[k]i are aggregated
over the network using dynamic average consensus to calculate t[k]i that track the
global gradient.

Next, we describe the main convergence result of Push-SAGA.

Theorem 2.6 Qureshi et al. [2022]. Consider the problem in (2.2) and let M ∶=
maximi, m ∶= minimi, and each fi,j be L-smooth and each fi to be 𝜇-strongly con-
vex. For the stepsize 𝛼 ∈ (0, 𝛼), for some 𝛼 > 0, Push-SAGA linearly converges, at
each node, to the global minimum x∗ of F. In particular, for 𝛼 = 𝛼, Push-SAGA
achieves an 𝜖-optimal solution in



(
max

{
M,

M
m

𝜅2𝜓

(1 − 𝜆)2

}
log 1

𝜖

)
,

component gradient computations (in parallel) at each node, where 𝜅 ∶= L∕𝜇,
(1 − 𝜆) is the spectral gap of the weight matrix, and 𝜓 is a directivity constant.
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Theorem 2.6 provides the conditions under which PushSAGA converges lin-
early to the global solution. The exact convergence of this stochastic method is
only possible because of SAGA-based variance-reduction technique. The result
also characterizes the directivity constant 𝜓 , which encapsulates the effects of
asymmetric communication over directed network. The formal analysis and the
complete proof of Theorem 2.6 can be found in Qureshi et al. [2022].

Figure 2.6 shows the performance comparison of Push-SAGA and ADD-OPT
(Algorithm 2.2) over a randomly generated directed graph of 16 nodes. We
consider the classification problem to distinguish images belonging to classes
sampled from MNIST dataset. Each node 𝑣i possesses a local cost fi and private
dataset and we compare the error computed at each epoch e[k] =

∑n
i=1 ||z[k]i − x∗||,

see Qureshi [2023] for complete code. Figure 2.6 shows the linear convergence
of Push-SAGA and ADD-OPT to the optimal soluton x∗ at each node. However,
Push-SAGA converges much faster than ADD-OPT in terms of epochs. It is
noteworthy that if node 𝑣i holds mi data samples, one epoch of ADD-OPT is
one iteration, whereas one epoch of Push-SAGA is mi iterations, as described in
Algorithm 2.5.
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Figure 2.6 Performance comparison of Push-SAGA (Algorithm 2.5) with ADD-OPT
(Algorithm 2.2). Source: Adapted from [Xi et al., 2017].
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2.6 Distributed Fine-Tuning of Vision Transformers

The methods discussed in this chapter play a fundamental role in several modern
applications. In this section, we consider the training process of large language
models (LLMs) and demonstrate the performance results of the stochastic variant
of ADD-OPT (Algorithm 2.2) [Qureshi et al., 2021] for fine-tuning vision trans-
formers (ViTs).

LLMs have gained a lot of attention recently due to their wide range of appli-
cations in natural language understanding, text completion, content generation,
image recognition, and sentiment analysis, Luong et al. [2015], Vaswani et al.
[2017], Dosovitskiy et al. [2021], Devlin et al. [2019], and Radford and Narasimhan
[2018]. These models use positional information and input features to apply the
“attention mechanism,” enabling LLMs to understand the underlying task. The
primary objective of an ideal LLM is to cultivate a general-purpose model from
which more targeted tasks can be derived, exhibiting intelligence across a wide
range of tasks. During the training process, developing a general understanding
is often referred to as pretraining, and developing a new intricate skill is called
fine-tuning.

Training LLMs is exceptionally resource-intensive since these models are
trained on large datasets and involves billions of tuning parameters, which
results in extended training times to achieve optimal performance. Moreover, as
discussed earlier, it is often not practical to bring all data to a single computational
node. Conversely, when nodes are trained on local datasets, they often struggle
to generalize well. Since training an entire model from scratch is practically
infeasible at distributed nodes, leveraging an existing pre-trained model and
fine-tuning for new downstream tasks becomes very significant.

In the sequel, we examine pretrained vision transformer models (ViT), Dosovit-
skiy et al. [2021], distributedly fine-tuned using ADD-OPT (Algorithm 2.2), over
an unforeseen image dataset distributed across multiple nodes. A key challenge
in this scenario is the error caused by the local versus global cost gap, which
arises due to the inherent limitation that the local dataset (at each node) may
not accurately represent the global data. As a consequence, Figure 2.7 illustrates
the attention maps learned at a node when specific classes (flowers and dogs) of
images are absent from the local fine-tuning dataset. It is evident that independent
fine-tuning (Local-FT) struggles to apply attention to the correct objects.

The stochastic variant of ADD-OPT addresses this challenge using gradient
tracking (eliminating the aforementioned cost gap) and learns attention maps that
are comparable to the centralized fine-tuning results. Table 2.2 shows the classi-
fication accuracy for a randomly selected ith node during the fine-tuning of ViT
under heterogeneous data distribution for different datasets, [Parkhi et al., 2012;
Nilsback and Zisserman, 2008; Krizhevsky et al., 2010a,2010b]. The complete
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Figure 2.7 Visualizing attention
maps of a pretrained ViT locally
fine-tuned on downstream tasks,
highlighting the impact when
classes “flowers” and “dogs” are
absent from the local dataset.

Table 2.2 Accuracy after fine-tuning ViT model for 100 epochs.

ViT Local-FT ADD-OPT

Datasets Accuracy at Node 𝒗i (%) Accuracy at Node 𝒗i (%)

Pets 13.80 87.21
Flowers 13.36 99.80
CIFAR-10 20.07 97.44
CIFAR-100 9.86 87.40

code can be found in Qureshi [2024a], where the authors fine-tune distributed
ViT, DeiT, and Swin-Transformer models over a peer-to-peer network of nodes.

2.7 Discussion and Future Directions

The exploration of distributed algorithms extends beyond our proposed
approaches. For instance, when dealing with bandwidth limitations and possibly
non-differentiable local cost functions, a noteworthy method integrates the
alternating direction method of multipliers (ADMM) with finite-time quantized
coordination algorithms (similar to Algorithm 2.3a), [Rikos et al., 2023a]. In this
scenario, nodes engage in the exchange of quantized valued messages, while
exhibiting asynchronous operation. Another approach involves the problem
of online distributed learning in the presence of communication bandwidth
limitations. In this concept, learning models undergo training on diverse, dis-
tributed data sources. Stochastic gradients drive local training, while a finite-time
quantized coordination protocol facilitates the aggregation of locally trained
models, [Bastianello et al., 2023]. Another approach involves tackling the prob-
lem of time-varying networks, [Saadatniaki et al., 2020]. This constraint refers
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to the limitation of computational nodes that may not always be accessible to
contribute to solving the global problem due to limitations in resources. More
generally, realistic constraints can be included on parameters and cost functions
and the new problem can be solved as a min–max optimization problem using
DGD ascent methods, [Qureshi and Khan, 2023a,2023c].

Looking ahead, there are several open problems that require attention.
Some examples include addressing bandwidth limitations in the presence of
packet-dropping links, handling asynchronicities in the context of bandwidth
limitations, and calculating the exact optimal solution in the face of bandwidth
limitations. In general, these (along with other) open problems highlight the
intricate nature of optimizing distributed systems, especially in scenarios where
communication bandwidth constraints play a pivotal role. As we delve into
open problems, it becomes evident that the evolution of distributed algorithms
demands a holistic understanding of the interplay between various factors (such
as communication constraints, system dynamics, and the nature of local cost
functions). By tackling these challenges, we aim to pave the way for advancements
that not only optimize distributed learning and control but also contribute to the
broader landscape of wireless communication networks.
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3.1 Introduction

Wireless sensor networks (WSNs) have recently been applied in various appli-
cation domains such as smart grid monitoring [Gungor et al., 2010], industrial
process monitoring [Gungor and Hancke, 2009], and mobile robots and
autonomous vehicles [Chong and Kumar, 2003]. In a significant number of appli-
cations, the sensors are usually located in remote places. Periodically replacing
batteries for such a scenario can be cumbersome and expensive. For mitigating
this issue, renewable energy harvesting from the surrounding environment by
individual sensors has been explored in the literature. For such a system, the
sensors are outfitted with a rechargeable battery of limited capacity which is
capable of energy harvesting from ambient sources. The drawback of such a
system is the inherent uncertain nature of the process of harvesting energy.
Additionally, due to each sensor having limited energy storage capacity, the
problem of finding the optimal energy allocation strategy for sensing, information
processing, and transmission is quite challenging in practice.

One important task of WSNs is to detect changes in the observation signal
distribution. In a parametric setting, this can be achieved using either classical
methods [Kay, 1998] or sequential detection techniques, such as quickest change
detection [Poor and Hadjiliadis, 2008]. The quickest detection techniques are
either applied locally at the individual sensors or at the fusion center (FC)
after collating information from the sensors [Tartakovsky and Veeravalli, 2008].
These detection problems focus on detecting sudden changes in the probability
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distribution of a stochastic process by finding the stopping time for minimizing
the detection delay, subject to false alarm rate constraint. In classical literature,
there are two approaches for analyzing such problems. The first one is the
Bayesian framework, where the unknown change point is to be assumed to be
drawn from a specific probability distribution [Banerjee and Veeravalli, 2011].
The other framework is non-Bayesian, where the change point is considered
unknown but deterministic in nature [Lorden, 1971; Pollak, 1985].

In standard settings over multiple time slots, the sensors in a WSN can sense
the observation signal during every time slot in the quickest change detection
framework. However, this can’t be ensured in the harvesting-based scenario. The
quickest change detection problem with energy constraints has been studied for
both the non-Bayesian [Geng and Lai, 2013] and the Bayesian frameworks [Geng
et al., 2014] in centralized settings. Decentralized quickest change detection has
been studied without energy constraints in Moustakides [2006] and Veeravalli
[2001]. Researchers have also studied the distributed detection problems for the
energy harvesting WSN but for the non-sequential hypothesis testing framework
[Kalus et al., 2015; Li et al., 2018; Ciuonzo et al., 2019]. We have focused on
the non-Bayesian quickest change detection with energy harvesting in both
decentralized and distributed settings in this chapter. In the decentralized sce-
nario, finding an optimal quantization policy at each individual sensor is essential
because the detection performance is sensitive to the accuracy of the information
collated at the FC. For the distributed settings, the asymptotic analysis of first
passage times is of high research significance.

Thus, this chapter focuses on the following two topics:

1) The average detection delay minimization for the non-Bayesian decentralized
quickest change detection in a WSN.

2) Asymptotic analysis for the non-Bayesian quickest change detection prob-
lem for the distributed scenarios when the average harvested energy at all
individual sensors is greater or equal to the energy required for sensing.

3.2 System Model

3.2.1 Decentralized Detection Scenario

As shown in Figure 3.1, the system has N wireless sensors capable of energy
harvesting and an FC. The time interval is slotted and the measurement signal
is observed by each sensor over M time slots. During the kth time slot, the
ith sensor decides whether to sense or refrain from sensing depending on the
energy available in its battery. Corresponding sensing decision is represented by
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Figure 3.1 Quickest change
detection with multiple sensors. X1,k

S1 . . .

XN,k

SN

h1,k hN,k

Fusion center

Change point detection

𝜈i,k 1 ≤ i ≤ N, 1 ≤ k ≤ M, and 𝜈i,k ∈ {0, 1}, and 1 (or 0) denotes the decision to
sense or not, respectively.

We assume that the observation signal is generated from one of the two proba-
bility distribution functions f0 or f1, corresponding to the periods before and after
the change point 𝜆, respectively. The observations signals {Xi,k} are assumed to
be independent and identically distributed (i.i.d.) across both time and all sensors,
before and after the change. The corresponding hypothesis testing problem is then
formulated as follows:

0∶ Xi,k ∼ f0(x), if k < 𝜆,

1∶ Xi,k ∼ f1(x), if k ≥ 𝜆.

After receiving the observation signal Xi,k, during the kth time slot, the ith sensor
Si computes the log-likelihood ratio (LLR), Zi,k = log f1(Xi,k)

f0(Xi,k)
. Furthermore, it is

quantized to qi,k bits by comparing the LLR with the 2qi,k − 1 thresholds resulting
in the quantized information Ui,k, which is forwarded to the FC. Without loss
of generality, the quantized information Ui,k is assumed to be limited to the set
{0, 1,… , 2qi,k − 1}, representing the 2qi,k quantization bins. During each time slot,
these quantized messages are transmitted to the FC from the sensors with suffi-
cient energy for transmission. The FC then applies the cumulative sum (CUSUM)
test to detect a change in the distribution of the observation signal using the
CUSUM-based sequential detection algorithm as described in Tartakovsky and
Veeravalli [2008].

During every time slot, the fading channel gains between the sensors and the
FC, denoted by {hi,k}, 1 ≤ i ≤ N, 1 ≤ k ≤ M, are assumed to remain fixed, but it
is assumed to change from slot to slot. In this chapter, we consider the scenario
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when a sensor chooses to sense the observation signal, only if it is feasible, based
on the available energy in the sensor’s battery. Thus, 𝜈i,k is determined by the
following rule:

𝜈i,k =

{
1, if Bi,k ≥ Es + qi,kEb

i,k,

0, otherwise,
(3.1)

where Es represents the energy required for sensing during each time slot. The
battery state, the energy needed to transmit each quantized bit, and the number
of quantized bits at the ith sensor during the kth time slot are represented by
Bi,k,Eb

i,k, and qi,k, respectively. The total energy spent by the ith sensor during that
time slot, denoted by Ei,k, is then calculated as:

Ei,k = 𝜈i,k(Es + qi,kEb
i,k). (3.2)

The maximum battery capacity for all sensors is denoted as Bmax. Furthermore,
we assume that Hi,k denotes the harvested energy by the ith sensor in the kth time
slot. Then, the battery state is computed by the following recursive expression:

Bi,k+1 = min
{

Bmax,Bi,k + Hi,k − Ei,k
}
. (3.3)

3.2.2 Distributed Detection Scenario

For the fully distributed case, when the local sensors perform the CUSUM test,
they only need sufficient energy required for sensing and processing a sample,
denoted by Es. However, when the CUSUM test statistic surpasses the threshold,
corresponding local decision is transmitted to the FC. So for that scenario, the
sensor needs to have at a minimum Es + Eb amount of energy, where Eb represents
the transmission energy. Assuming Bmax = ∞, we can also express the battery
state recursively as Bk+1 = Bk + Hk − 1(Bk>Es)Es.

Thus, the modified version of the CUSUM test statistics for the energy
harvesting sensor can be expressed as follows:

W k = max
{

0,W k−1 + 𝜉k log
f1(xk)
f0(xk)

}
, W0 = 0, (3.4)

where 𝜉k = 1(Bk>Es). Obviously, 𝜉k = 1 happens with probability P(Bk > Es) and
𝜉k = 0, with probability 1 − P(Bk > Es). We assume that the energy harvesting
process Hk is independent and identically distributed (i.i.d) with mean value of
E(Hk) = H. It is also assumed to be independent of the observation sequence{

Xk
}

. It should be noted that the energy harvesting processes across the different
sensors are assumed to be independent, though not necessarily identically
distributed. To summarize, average harvested energy Hi for individual sensors
can be different. The change point is detected at a sensor when this modified
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version of the CUSUM test statistics surpasses the threshold h. Consequently, the
battery state can be further expressed using the following recursive equation:

Bk+1 =

{
Bk + Hk − 1(Bk>Es)Es, if W k ≤ h,

Bk + Hk − 1(Bk>Es+Eb)(Es + Eb), otherwise.
(3.5)

In this chapter, we only study the random process 𝜉k for the scenario, where the
average harvested energy H exceeds the amount of energy used Ek, i.e. H ≥ Es.

3.3 Quickest Change Detection at the FC

For the decentralized scenario, the discrete valued quantized messages Ui,k are
assumed to be distributed according to the probability mass function (pmf) g j

i ,
if the observations are drawn from the hypothesis j. For quantizing Zi,k to qi,k
bits, we have to compute 2qi,k − 1 number of thresholds. If we denote the lth quan-
tization threshold for the ith sensor as ti

l , the corresponding pmfs can then be
expressed as follows:

g1
i (l) = 𝔽1(ti

l+1) − 𝔽1(ti
l), (3.6)

g0
i (l) = 𝔽0(ti

l+1) − 𝔽0(ti
l), (3.7)

where 𝔽1 and 𝔽0 are the corresponding cumulative distribution functions to the
probability distribution functions f1 and f0, respectively. They can be computed as
follows:

𝔽1(x) = ∫

x

−∞
f1(x)dx,

𝔽0(x) = ∫

x

−∞
f0(x)dx.

After obtaining the quantized information Ui,k from the individual sensors, the
FC calculates the quantized LLR between hypotheses 1 and 0 as follows:

Zq(k) =
N∑

i=1
log

g1
i (Ui,k)

g0
i (Ui,k)

. (3.8)

We denote T as the stopping time, which is the time instant when the quickest
change detection algorithm identifies a change in the distribution of the
observation signal. The sensing strategy is defined as 𝝂 = {𝜈i,k; i = 1,… ,N;
k = 1,… ,M}, and the quantization function is represented as q = {qi,k; i = 1,
… ,N; k = 1,… ,M}. Together, the stopping time T and these parameters form
the policy 𝜙 = (𝝂,q,T).

The non-Bayesian quickest change detection algorithm is designed to detect the
change point as rapidly as possible after it occurs. Therefore, our objective is to
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identify the joint sensing and quantization policy 𝜙, that minimizes the average
worst-case detection delay (supremum average detection delay [SADD]) [Pollak,
1985], which is expressed as follows:

SADD(𝜙) = sup
1≤𝜆≤∞

𝔼𝜆(T − 𝜆|T ≥ 𝜆), (3.9)

where 𝔼𝜆 denotes the expectation for the change point 𝜆. We want to determine
the optimal sensing decision 𝝂⋆ and the optimal quantization function q⋆, and
the corresponding policy tuple 𝜙̃ = (𝝂⋆,q⋆,T). The optimal stopping time is then
computed by the minimax change point detection procedure as follows:

T⋆ = min
T

SADD(𝜙̃), s.t. 𝔼∞[T] > 𝛾; 𝛾 > 1. (3.10)

Here, 𝔼∞[T] denotes the expected stopping time when the change does not occur,
i.e. 𝜆 = ∞.

In the decentralized scenario, it is asymptotically optimal for the sensors
to quantize their individual LLRs in a way that maximizes the individual
Kullback–Leibler (KL) divergence measures between the distributions after
and before the change [Tartakovsky and Veeravalli, 2008]. Consequently, the
corresponding CUSUM test statistic at the FC is defined by the following recursive
equation:

W q(k) = max
{

0,W q(k − 1) + Zq(k)
}
, W q(0) = 0. (3.11)

The optimal stopping time for the CUSUM test can be computed as follows:

T⋆ = min
{

k ≥ 1 ∶ W q(k) ≥ r
}
, where r = log 𝛾. (3.12)

3.4 Optimization Problem Formulation

The asymptotic worst-case detection delay (as 𝛾 → ∞) of the optimal decentralized
detection scheme can be expressed as Tartakovsky and Veeravalli [2008]:

SADD(T) ∼
log 𝛾
Iq

tot
as 𝛾 → ∞, (3.13)

where Iq
tot represents the total Kullback–Leibler (KL) information number

between the non-null and null hypothesis respectively, calculated by using the
quantized information obtained from the local sensors. The number of active
users in the kth time slot is denoted by nk. It is a random variable which depends
on the channel state information (CSI) and energy state information (ESI), for a
given sensing and quantization strategy. In that case, Iq

tot (for the kth time slot)
can be computed as:

Iq
tot =

nk∑
i=1

I(g1
i , g

0
i ) =

nk∑
i=1

2qi,k−1∑
l=0

g1
i (l) log

g1
i (l)

g0
i (l)

, (3.14)
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where I(g1
i , g

0
i ) denotes the KL divergence between the probability mass functions

g1
i and g0

i of the sensor Si.
Thus, the optimization problem is formulated as follows:

max
𝜈i,k ,qi,k

M∑
k=1

𝔼nk

{ nk∑
i=1

{
𝜈i,k

2qi,k−1∑
l=0

g1
i (l) log

g1
i (l)

g0
i (l)

}}
, (3.15)

s.t. 𝜈i,k ∈ {0, 1} ; ∀i, k, (3.16)

qi,k ∈
{

1,… ,Qmax
}
; ∀i, k, (3.17)

Ei,k ≤ Bi,k; ∀i, k. (3.18)

3.4.1 Optimal Threshold Quantization

The KL divergence for the kth slot can be computed by utilizing the quantized LLR
from nk active sensor. It can be written as follows:

 ({ti
l ∶ l ∈ {0,… , 2qi,k − 1}}) =

nk∑
i=1

2qi,k−1∑
l=0

g1
i (l) log

g1
i (l)

g0
i (l)

, (3.19)

while assuming that 𝜈i,k and qi,k satisfy (3.16), (3.17), and (3.18).
The Kullback–Leibler divergence (KLD) contribution from individual sensors

depends on their own quantization thresholds. Thus, we maximize the KLD of
individual sensors separately with respect to their own quantization thresholds.
Therefore, the optimal thresholds for the ith sensor can be computed by solving for
𝜕i
𝜕ti

l
= 0, where i =

∑2qi,k−1
l=0 g1

i (l) log g1
i (l)

g0
i (l)

. To simplify the threshold notation ti
l , we

decide to drop the sensor index i from it. It is noticeable that only two consecutive
terms in the sum of the above expression are functions of tl, i.e. for a specific sen-
sor only g1(l), g0(l), g1(l − 1), and g0(l − 1) depend on tl. Hence, the corresponding
gradient expression can be expressed as:

𝜕i

𝜕tl
= 𝜕

𝜕tl

{


1
i + 

2
i
}
, (3.20)

where 1
i = g1(l − 1) log g1(l−1)

g0(l−1)
and 

2
i = g1(l) log g1(l)

g0(l)
, and the individual gradients

is simplified as follows:
𝜕1

i

𝜕tl
=
𝜕g1(l − 1)

𝜕tl
log

g1(l − 1)
g0(l − 1)

+ g0(l − 1) 𝜕
𝜕tl

{
g1(l − 1)
g0(l − 1)

}
, (3.21)

𝜕2
i

𝜕tl
=
𝜕g1(l)
𝜕tl

log
g1(l)
g0(l)

+ g0(l) 𝜕
𝜕tl

{
g1(l)
g0(l)

}
. (3.22)

Thus, the optimal thresholds are computed by solving the following equations:
𝜕1

i

𝜕tl
+
𝜕2

i

𝜕tl
= 0, l = 0, 1,… , 2qi,k − 1. (3.23)
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With some algebraic manipulations, (3.23) is simplified to:

𝜕g1(l − 1)
𝜕tl

⎧⎪⎨⎪⎩log
⎧⎪⎨⎪⎩

g1(l−1)
g0(l−1)

g1(l)
g0(l)

⎫⎪⎬⎪⎭
⎫⎪⎬⎪⎭

=
𝜕g0(l − 1)

𝜕tl

{
g1(l − 1)
g0(l − 1)

−
g1(l)
g0(l)

}
, (3.24)

which can be further simplified to:

𝜕g1(l−1)
𝜕tl

𝜕g0(l−1)
𝜕tl

=

⎧⎪⎪⎨⎪⎪⎩
g1(l−1)
g0(l−1)

− g1(l)
g0(l)

log
{ g1 (l−1)

g0 (l−1)
g1 (l)
g0 (l)

}
⎫⎪⎪⎬⎪⎪⎭
, l = 1, 2,… , 2qi,k . (3.25)

As previously stated, the nonadaptive optimal thresholds are calculated by solving
the above-mentioned equation using a nonlinear solver, once the optimal number
of quantization bits is determined through the dynamic programming (DP)
algorithm.

3.5 Detection Delay Analysis When H ≥ Es for the
Distributed Scenario

In this section, we study the case when H ≥ Es and we prove that P(𝜉k = 1) = 1
for k > N and sufficiently large enough N. We use the strong law of large num-
ber (SLLN) for the proof. It is utilized on the i.i.d. sequence

{
Hk

}
. The analysis

concerns the asymptotic case, when 𝛾 → ∞ or h → ∞. For that case, we can write
(provided that the CUSUM statistic doesn’t exceed h):

Bk = B0 +
k−1∑
m=0

Hm − Es

k−1∑
m=0

1(Bm>Es). (3.26)

Therefore, the constraint Bk > Es + Eb holds iff

B0 +
k−1∑
m=0

Hm − Es

k−1∑
m=0

1(Bm>Es) > Es + Eb. (3.27)

Equivalently, Bk > Es + Eb is satisfied if and only if

k−1∑
m=0

Hm > Es

k−1∑
m=0

1(Bm>Es) − (B0 − Es − Eb). (3.28)
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If we divide both sides by k, we can write:∑k−1
m=0 Hm

k
> Es

∑k−1
m=0 1(Bm>Es)

k
−

B0 − Es − Eb

k
. (3.29)

Using SLLN, we can infer that there is a sufficiently large N(𝜖), such that for
k > N(𝜖), the average harvested energy across k slots meets the following
constraint:||||||

∑k−1
m=0 Hm

k
− H

|||||| < 𝜖 (3.30)

for any 𝜖 > 0. Therefore, we examine the following two distinct scenarios.

● For the first case, assume
∑k−1

m=0 Hm

k
< H. For this case, (3.30) simplifies to∑k−1

m=0 Hm

k
> H − 𝜖.

● For the second case, we assume
∑k−1

m=0 Hm

k
> H. Thus, (3.30) simplifies to∑k−1

m=0 Hm

k
< H + 𝜖.

Now, we let the initial battery state be chosen arbitrarily, with the assumption
that B0 > Es + Eb. We begin by examining the first case. In this case, the right-hand
side of Eq. (3.28) can be upper bounded as follows:

Es

∑k−1
m=0 1(Bm>Es)

k
−

B0 − Es − Eb

k

≤ Es −
B0 − Es − Eb

k
≤ H −

B0 − Es − Eb

k

< H − 𝜖 <
∑k−1

m=0 Hm

k
. (3.31)

The penultimate step in (3.31) can be justified by the condition B0 > Es + Eb.
Consequently, B0−Es−Eb

k
can be lower bounded by a positive constant 𝜖, where

𝜖 <
B0−Es−Eb

k
.

Similarly, we analyze the second case, where
∑k−1

m=0 Hm

k
> H. For this case, we again

concentrate on the right-hand side of Eq. (3.28), which can be upper bounded as
follows:

Es

∑k−1
m=0 1(Bm>Es)

k
−

B0 − Es − Eb

k

≤ Es −
B0 − Es − Eb

k
≤ H −

B0 − Es − Eb

k

< H <

∑k−1
m=0 Hm

k
. (3.32)
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In this case, the penultimate step in (3.32) can be justified by the condition
B0 > Es + Eb. Therefore, B0−Es−Eb

k
is always positive, leading to H − B0−Es−Eb

k
< H.

The final step follows directly from the assumptions related to this case. This
indicates that the constraint in (3.28) is satisfied for both cases.

Thus, since P(𝜉k = 1) = 1 for significantly large k > N, in the asymptotic case
where 𝛾 → ∞, the modified CUSUM test reduces to the standard CUSUM test.
Consequently, the results of the standard CUSUM test are applicable in this
scenario.

In Sections 3.5.1 and 3.5.2, we summarize the results for the average detection
delay and the distribution of the first passage time to false alarm for this scenario.

3.5.1 Average Detection Delay

To derive the average detection delay expression, we define the random walk as
Sn =

∑n
k=0 Zk, where S0 = 0. The expectation and probability measure under the

distribution f1 are denoted as 𝔼1 and P1 respectively. Therefore, the mean and
variance of Zk can be represented as 𝔼1(Zk) = KL, 𝔼1

{
(Zk − KL)2} = 𝜎2

1 < ∞.
The running minimum of the random walk Sn is denoted by 𝜂n which is defined
as 𝜂n = −min0≤k≤nSk. The perturbed version of the random walk Sn, with the
additional perturbation term 𝜂n, i.e. Wn can be expressed as Wn = Sn − min 0≤k≤n
Sk = Sn + 𝜂n.

Most results related to the first passage time for the random walk crossing a
threshold were investigated in the literature for the original random walk Sn. How-
ever one can extend these results to the perturbed random walk Wn using nonlin-
ear renewal theory, if the “slowly varying” conditions [Tartakovsky et al., 2014]
hold for the corresponding perturbation term 𝜂n. Starting from the first passage
time which is defined as 𝜏h = inf

{
n ≥ 1 ∶ Wn > h

}
, we express the correspond-

ing overshoot as 𝜅(h) = W𝜏h
− h. Furthermore, we define the first ladder epoch

T+, which is the first time instant when the random walk Sn takes a positive value,
as T+ = inf

{
n ≥ 1 ∶ Sn > 0

}
. The corresponding ladder height at the first ladder

epoch is denoted by ST+
, which is the value of the random walk at time T+.

The author of Dey [2020] found that for an energy harvesting sensor whose aver-
age harvested energy H ≥ Es and implementing the CUSUM test algorithm, both
the average detection delay and the distribution of the detection delay under the
non-null hypothesis (f1) don’t depend on H. These parameters can be obtained
from the following first-order asymptotic expressions:

𝔼1
{
𝜏h
}
= 1

KL

⎧⎪⎨⎪⎩h +
𝔼1

{
S2

T+

}
𝔼1

{
ST+

} −
𝔼1

{
Z2

1
}

2KL

⎫⎪⎬⎪⎭ + o(1), (3.33)
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P1(𝜏h ≤ x, 𝜅(h) ≤ y) = Φ(x)H(y),

as h → ∞, ∀x ∈ {−∞,∞} , y ≥ 0, (3.34)

where 𝜏h =
𝜏h−

h
KL

h𝜎2
1


3
KL

and limn→∞P(𝜅(h) ≤ y) = H(y). Furthermore, Φ(x) repre-

sents the cumulative distribution function of the standard normal distribution
 (0, 1).

3.5.1.1 Average Detection Delay for Distributed Change Detection with Local
Detection at the Sensors
In this section, we will analyze the average detection delay in the distributed
detection case. Specifically, we focus on three decision fusion rules: OR, AND, and
r out of N rule. The corresponding first passage times are simply the minimum,
maximum and the rth-order statistics of all the first passage times obtained from
the individual sensors, respectively. Let the normalized average first passage
times be denoted as 𝜏1, 𝜏2,… , 𝜏N and let their arrangement in increasing order be
given by 𝜏 (1) ≤ 𝜏 (2) ≤ · · · ≤ 𝜏(N). Then, the normalized average first passage times
for the OR, AND, and r out of N rule (denoted by Tmin, Tmax, and Tr respectively)
can be expressed as follows:

Tmin = 𝜏 (1) = min
{
𝜏1, 𝜏2,… , 𝜏N

}
,

Tmax = 𝜏 (N) = max
{
𝜏1, 𝜏2,… , 𝜏N

}
,

Tr = 𝜏(r). (3.35)

To compute the normalized average first passage times for OR, AND, and r out
of N rule, we use the moments of different order statistics of a standard normal
variate. According to Nadarajah [2008], if 𝜏1, 𝜏2,… , 𝜏N follow a standard normal
distribution ( (0, 1)), then the jth-order moment of the sth-order statistic can be
computed using the following expression:

𝔼(𝜏 j
s∶N ) =

N!2j∕2+1−s

𝜋1∕2(s − 1)!(N − s)!

N−s∑
l=0

(N − s
l

)(
−1

2

)l

×
s+l−1∑

p=0,p+j even

(
s + l − 1

p

)
𝜋−p∕22pΓ

(
p + j + 1

2

)

× F(p)
A

(
p + j + 1

2
; 1

2
,… ,

1
2
; 3

2
,… ,

3
2
; −1,… ,−1

)
, (3.36)

where Fp
A is the Lauricella function of type A with parameter p.
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This result can be used to prove that the normalized average detection delay for
OR, AND, and r out of N rule can be expressed as:

𝔼
{

Tmin
}
= N21∕2

𝜋1∕2

N−1∑
l=0

(N − 1
l

)(
−1

2

)l

×
l∑

p=0,p odd

(
l
p

)
𝜋−p∕22pΓ

(
p + 2

2

)

× F(p)
A

(
p + 2

2
; 1

2
,… ,

1
2
; 3

2
,… ,

3
2
; −1,… ,−1

)
. (3.37)

𝔼
{

Tmax
}
= N23∕2−N

𝜋1∕2

N−1∑
p=0,p odd

(
N − 1

p

)
𝜋−p∕22pΓ

(
p + 2

2

)

× F(p)
A

(
p + 2

2
; 1

2
,… ,

1
2
; 3

2
,… ,

3
2
; −1,… ,−1

)
. (3.38)

𝔼
{

Tr
}
= N!23∕2−r

𝜋1∕2(r − 1)!(N − r)!

N−r∑
l=0

(N − r
l

)(
−1

2

)l

×
r+l−1∑

p=0,p odd

(
r + l − 1

p

)
𝜋−p∕22pΓ

(
p + 2

2

)

× F(p)
A

(
p + 2

2
; 1

2
,… ,

1
2
; 3

2
,… ,

3
2
; −1,… ,−1

)
. (3.39)

3.5.2 Asymptotic Distribution of the First Passage Time to a
False Alarm

The author of Dey [2020] also found that for an energy-harvesting sensor with
average harvested energy H ≥ Es implementing the CUSUM test, the asymptotic
tail distribution of the (normalized) first passage time to a false alarm which is
independent of H, can be expressed as:

P∞
(

e−h𝜏∞(h) > x
)
= e−𝛽x, h → ∞, (3.40)

where 𝛽 = KL𝛿
2
, 𝛿 = limh→∞𝔼1{exp{−(S𝜏∞(h) − h)}} and

𝔼∞[𝜏∞(h)] =
eh

KL𝛿
2 (1 + o(1)).

3.5.2.1 Asymptotic Distribution of First-Passage Time to False Alarm
for Distributed Change Detection with Local Detection at the Sensors
This section focuses on the asymptotic analysis of the tail distribution of the first
passage time to a false alarm for the distributed detection case. We examine the
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tail distribution for OR, AND, and r out of N fusion rule. From (3.40), it can be
noted that the first-passage times at each sensor asymptotically follows an expo-
nential distribution with mean 1

𝜆
= eh

KL𝛿
2 with cumulative distribution function

F(x) = 1 − e−𝜆x. Utilizing the theory of order statistics [David and Nagaraja, 2004],
we derive the asymptotic cumulative distribution functions for the first-passage
time to a false alarm for OR, AND, and r out of N fusion rule. These cumulative
distribution functions are computed using the following expressions:

● The cumulative distribution function of the first-passage time for the OR fusion
rule is:

Fmin(x) = 1 − (1 − F(x))N = 1 − e−N𝜆x, (3.41)

which indicates that it follows an exponential distribution with mean N𝜆.
● The cumulative distribution function of the first-passage time for the AND

fusion rule is:

Fmax(x) = F(x)N =
(
1 − e−𝜆x)N

, (3.42)

and for the asymptotic case as N → ∞, the distribution approaches a Gumbel
distribution with the following cumulative distribution function:

Fasym
max (x) = e−e(log(N)−𝜆x)

. (3.43)

● The cumulative distribution function of the first-passage time for r out of N
rule is:

Fr(x) =
N∑

i=r

(N
i

)
Fi(x)(1 − F(x))N−i

=
N∑

i=r

(N
i

)
(1 − e−𝜆x)ie−(N−i)𝜆x. (3.44)

3.5.2.2 Average First-Passage Time to False Alarm for Distributed Change
Detection with Local Detection at the Sensors
This section focuses on the asymptotic analysis of the average first passage time to
a false alarm under the null hypothesis for the OR, AND, and r out of N rules. We
study the 1st,Nth, and rth-order moments of the first-passage time distribution,
which are essentially the average first-passage time for OR, AND, and r out of N
rule, respectively. In order to accomplish this, we utilize the following theorem
from Nagaraja [2006]:

Theorem 3.1 If 𝜏1, 𝜏2,… , 𝜏N follow exponential distribution with parameter 𝜆,
then the ith-order statistics 𝜏(i) follows the distribution:

(𝜏(i), i = 1,… ,N)
d
= 1
𝜆

( i∑
j=1

Yj

N − j + 1

)
(3.45)
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where
d
= represents the distributional equality and Yj are i.i.d standard exponential

random variables. Additionally, the first-order moment of the ith-order statistics
can be derived by the following expression:

𝔼(𝜏(i)) =
i∑

j=1

1
𝜆(N − j + 1)

. (3.46)

Using Theorem 3.1 and the order statistics theory, we derive the asymptotic aver-
age first passage time to a false alarm for the OR, AND, and r out of N rules. They
are calculated by the following expressions:

𝔼∞(Tmin) =
1

N𝜆
, (3.47)

𝔼∞(Tmax) =
N∑

j=1

1
𝜆(N − j + 1)

, (3.48)

𝔼∞(Tr) =
r∑

j=1

1
𝜆(N − j + 1)

. (3.49)

3.6 Simulation Results

3.6.1 Decentralized Detection Results

In this section, the simulation results are presented for both causal and noncausal
information with finite battery capacity and for both optimal and uniform quan-
tization strategies for the decentralized detection case. The power gain for the
channel between the ith sensor Si and the FC for the kth time slot, hi,k, is modeled
as a random variable exponential distribution with unity mean. The amount of
energy being harvested, Hi,k, for the sensor Si during the kth time slot is also
assumed to be a random variable with exponentially distribution with a mean
of 1 μJ. The observations are assumed to be sampled from a Gaussian distribution.
The mean and the variance of the Gaussian distribution under hypothesis 1
are assumed to be 𝜇 = 1.5 and 𝜎2 = 1, respectively. We also assumed that the
probability of bit error for transmitting the quantized observation to the FC is
Pe = 0.005. The noise power spectral density is taken to be N0 = 0.02 μW∕Hz.
The sensing energy is taken to be Es = 0.1μJ. The number of sensors is assumed
to be N = 2. The maximum quantization bits for the simulation is assumed to be
Qmax = 5. This choice of Qmax is motivated by Figure 3.2, which demonstrates that
the Kullback–Leibler (KL) divergence measure for both the optimal and uniform
quantization policies, as well as the unquantized case, converges and becomes
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Figure 3.2 KL information number for a single-slot, single-user scenario under optimal
quantization, uniform quantization, and no quantization, as a function of the number of
quantization bits qi,k .

nearly identical when qi,k ≥ 5. The initial battery level for all sensors is assumed to
be 0.4 μJ. In the DP algorithm implementation, the channel power gain hi,k and the
battery state Bi,k are both quantized to four discrete levels. The average detection
delay of the change point is calculated based on 104 Monte Carlo iterations.

Figure 3.2 compares the performance of the KL information number evalu-
ated for the single sensor and one-time slot scenario. We have plotted the KL
information number for the unquantized observation, optimal quantization, and
uniform quantization policies while varying the number of quantization bits. The
KL information number for the unquantized observation can be computed as
𝜇2

2𝜎2 . 𝜇2

2𝜎2 . This represents an upper bound for the quantized observation cases. As
expected, Figure 3.2 illustrates that the optimal quantization policy outperforms
the uniform quantization policy. Additionally, we observe that the KL information
number for all three policies converges and becomes comparable as the number
of quantization bits increases.

For the remaining plots, we set the probability of false alarm to Pfa = 0.01.
In Figure 3.3, we plot the average detection delay as a function of the average
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Figure 3.3 Average detection delay (in time slots) versus mean channel gain 𝜇h for
noncausal CSI, comparing optimal and uniform quantization policies.

channel power gain parameter 𝜇h, with the battery capacity fixed at Bmax = 0.8μJ
for the noncausal CSI scenario. It is observed that the average detection delay
for the optimal quantization policy decreases more rapidly compared to the
uniform quantization policy. Additionally, the average detection delay reduces
as the horizon length increases. This is intuitive for the non-causal scenario,
as a longer horizon length provides more information before the transmission
process, allowing sensors to better plan their quantization, sensing strategies,
and energy usage. Figure 3.4 presents a comparative plot of the average detection
delay with varying battery capacities Bmax while keeping the mean channel gain
𝜇h = 1. This comparison is made for both optimal and uniform quantization
policies under noncausal and causal CSI conditions, with the horizon length set
to M = 8. The numerical comparison indicates that, for Bmax = 0.7μJ, the average
detection delay with the optimal quantization policy for the causal CSI scenario
is 15.3% higher than for the noncausal scenario.
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Figure 3.4 Average detection delay (in time slots) versus battery capacity Bmax for
noncausal and causal CSI, comparing optimal and uniform quantization policies.

3.6.2 Distributed Detection Results

We include the simulation results for the distributed detection case in this sub-
section. For this scenario, we assume that the observation signal is modeled as
being drawn from a Gaussian distribution,  (0, 𝜎2) under the null hypothesis and
 (𝜇, 𝜎2) under the alternative hypothesis where 𝜇 = 0.5 and 𝜎2 = 1. The sensing
energy Es is assumed to be 0.5 mJ. We perform Monte-Carlo simulations using
105 samples with results averaged over 35, 000 iterations to obtain insights into
the expected detection delay and the tail distribution to false alarm when H > Es.
The detection threshold is set to h = log(200). For this simulation, the KL diver-
gence KL is calculated as 𝜇2

2𝜎2 . Additionally, under the alternative hypothesis 1,
we assume the change happens at 𝜈 = 1.

Figure 3.5 shows the expression 1 − F∞(x) with respect to x, where x represents
the random variable for the detection delay and F∞(x) represents the asymptotic
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the null hypothesis 0.

cumulative distribution function of the first passage time to a false alarm. It
shows that the plot corresponding to the OR rule (Tmin) is characteristically
distinct from the AND rule (Tmax) and r out of N rule (Tr) as for the OR rule,
the corresponding cumulative distribution function is exponentially distributed.
Figure 3.5 also shows that the performance of the r out of N rule falls between
the OR and the AND rule. For these simulations, we set N = 20 and r = 11 for
the r out of N rule, which essentially represents the majority logic fusion rule.
Additionally, we also add the asymptotic result for the AND rule when N → ∞
in Figure 3.5. As a numerical comparison, in Figure 3.5, the simulated value of
1 − Fasym

max (x) for x = 1.5 × 104 is approximately 5.11% lower than the theoretical
value.

In Figure 3.6, we plot the expression 1 − F𝜈(x) with respect to x, where x
represents the random variable for the detection delay and F𝜈(x) represents the
asymptotic cumulative distribution function of the normalized detection delay
evaluated under the assumption that change happens at point 𝜈. Interpretations
similar to Figure 3.5 can be made for these plots as well.
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3.7 Conclusions and Future Work

In this chapter, we study the minimization of detection delay in the context of the
quickest change detection framework for both the decentralized and distributed
multiple sensor scenarios, where individual sensors harvest energies from their
surroundings. We propose an optimal sensing and quantization strategy for such
an average delay minimization problem for the decentralized case with quantized
information over a finite number of time slots, by utilizing DP algorithm for both
causal and noncausal CSI cases. The noncausal CSI case provides a performance
benchmark for the causal counterpart. We derive the analytical expression for the
optimal thresholds when the number of quantization bits is kept fixed for each
time slot. Furthermore, we put forward a uniform quantization-based heuristic
policy. Simulation results indicate the optimal quantizer performs significantly
better than its uniform counterpart for small number of quantization bits. This
performance difference becomes negligible as the number of quantization bits
becomes larger. For the distributed scenario, we shift our attention from the
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average detection delay and the tail distribution of the run length to a false
alarm and their relevant asymptotic expressions. This study concentrates on the
case, when the amount of average energy harvested by individual sensors, i.e.
H exceeds Es. We demonstrate that the standard asymptotic result for a single
sensor without any energy constraints holds in this case. We extend this result to
the distributed case by using the order statistics theory.

In the future, we will further expand on our findings to the situation when
H < Es through the application of the Markov random walk theory and non-linear
renewal theory. For real-world applications, in a WSN, the average harvested
energy for some sensors will exceed Es and the rest will not. Therefore, examining
the average detection delay and the tail distribution of the run length leading to a
false alarm for such a case would extend this research. The asymptotic evaluation
of these parameters in a consensus network utilizing energy-harvesting sensors is
another possible research direction. Other possible extensions of both distributed
and decentralized detection problems could be into the domain of Bayesian
framework, when the change point is considered unknown and is assumed
to be generated by a random process with a known probability distribution,
or to investigate the quickest change detection of the generalized-likelihood
ratio test, when the distributional parameters after the change are unknown.
Extensions in the domain of nonparametric change detection can also be studied
with window-based sampling techniques. However, there are nontrivial issues
related to an appropriate optimization problem formulation in the absence of
closed-form expressions or bounds for the worst-case average detection delay for
such nonparametric algorithms.
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4.1 Introduction

The Internet of Things (IoT) pushes for broad deployment of small devices with
sensing, processing and communication abilities. This technological paradigm
stands as a transformative force in the wireless communications and sensing
sector. The “sensing arm” of the IoT, embodied by wireless sensor networks
(WSNs), casts a multifaceted shadow over our daily lives. Within this expansive
landscape, distributed detection (DD) emerges as a mature research topic, its
applications spanning from cognitive radio systems [Chen and Zhang, 2019] to
industrial contexts [Tabella et al., 2021].

A retrospective analysis highlights the evolution of DD literature through three
distinct “waves.” The first wave, marking its inception, can be traced back to the
foundational work of Tenney and Sandell [1981]. This phase saw significant contri-
butions from Chair and Varshney [1986], Reibman and Nolte [1987], and Warren
and Willett [1989]. In this early stage, the literature focused on quantizing (via one
or multiple bits) measurements and likelihoods, exploring the complexities of local
detectors and fusion rule design. Implicit in these studies was the assumption of
decoupled (or noise-free) reporting channels.

Wireless Sensor Networks in Smart Environments: Enabling Digitalization from Fundamentals to Advanced
Solutions, First Edition. Edited by Domenico Ciuonzo and Pierluigi Salvo Rossi.
© 2025 The Institute of Electrical and Electronics Engineers, Inc. Published 2025 by John Wiley & Sons, Inc.
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This evolved in the early 2000s (second wave) to include channel-aware fusion
strategies as WSNs became more common [Chen et al., 2004]. Exploration
extended to diverse reporting protocols, including type/time/frequency/
code-based schemes [Mergen et al., 2007; Yiu and Schober, 2008] and interfering
access [Berger et al., 2009]. Further endeavors for performance improvement
led to investigations into power allocation [Zhang et al., 2008], censoring
schemes [Appadwedula et al., 2005], and sensor subset selection [Ahmadi and
Vosoughi, 2009].

In recent years, the third wave of DD has emerged, harnessing innovative tech-
nologies like backscattering [Ciuonzo et al., 2019] and energy harvesting [Tarighati
et al., 2017] toward the concept of green (namely, near zero-energy) sensors. The
integration of mmWave sensors [Chawla et al., 2021] and massive MIMO [Ciuonzo
et al., 2015; Chawla et al., 2019] has been explored to curtail the energy expendi-
ture of WSNs while achieving optimal performance. Intriguingly, the untapped
potential of flexible reconfigurable intelligent surfaces (RISs) [Huang et al., 2019;
Di Renzo et al., 2020] in the realm of DD beckons further exploration, which is
the objective of this chapter. The main benefits of RISs in the IoT ecosystem are
showcased in Zappone et al. [2022].

This chapter explores DD involving sensors that make local decisions and
communicate them to a fusion center (FC) via a multiple-access channel. The
FC features a receive array designed to counteract fading attenuation and reduce
interference from sensors reporting simultaneously [Zhang et al., 2008; Ciuonzo
et al., 2012]. The above assumption configures a distributed MIMO setup [Zhang
et al., 2008; Ciuonzo et al., 2012]. In this context, information alignment of the
sensors’ contributions is facilitated through the deployment and design of an
appropriate RIS [Huang et al., 2019; Di Renzo et al., 2020].

The aim of this chapter is then to provide a discussion on the design and opti-
mization in DD when capitalizing on the concept of smart environments [Mudkey
et al., 2022]. Specifically, a joint fusion rule and RIS design solution is discussed.
Regrettably, pursuing an optimal joint approach is impractical because of the
considerable complexity associated with the log-likelihood ratio (LLR). This com-
plexity complicates the process of deriving a suitable RIS design, primarily due to
the lack of theoretical performance metrics for the LLR in this context. Accord-
ingly, this design solution leverages a simplification originating from the “Ideal
Sensors” (IS) assumption [Chen et al., 2004; Ciuonzo et al., 2012, 2015], namely,
it is assumed perfect sensing at the design stage. The resulting simpler design
provides an effective joint fusion rule and RIS design which is agnostic of the sen-
sor performance. The associated optimization problem is solved by means of the
alternating optimization (AO) and minorization–maximization [Sun et al., 2016].

The rest of the chapter is organized as follows. Section 4.2 describes the sys-
tem model considered, whereas Section 4.3 develops the IS-based joint fusion and
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RIS design. The benefits of such approach are evaluated in a relevant numeri-
cal setup in Section 4.4. Wrap-up considerations and suggested further reading
in Section 4.5 end the chapter.

4.2 System Model

In this chapter, a distributed binary hypothesis testing framework is considered,
employing K sensors to discriminate between hypotheses in the binary set  ≜

{0,1}. This is visually illustrated in Figure 4.1. The pair of hypotheses may rep-
resent the absence or presence of a particular anomalous phenomenon. Each sen-
sor, indexed as k ∈  ≜ {1, 2,… ,K}, takes a binary local decision 𝜉k ∈  based on
its individual measurements. This decision 𝜉k is encoded into xk ∈  = {−1,+1},
which corresponds to a binary phase-shift keying (BPSK) modulation. For sim-
plicity, it is assumed that the hypothesis 1 is represented by xk = +1, while the
decision corresponding to 0 maps to xk = −1.

The BPSK-mapped decisions from all the sensors are collected in the K × 1
transmitted signal vector x for compactness. Accordingly, the WSN sensing
quality is completely defined by the conditional joint probability mass functions
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Figure 4.1 The RIS-assisted DF system model considered.
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Pr(x|i), i ∈ {0, 1}. The content of this chapter does not rely on any conditional
mutual independence assumption on xk, given the specific hypothesis i ∈ .
Furthermore, PD,k ≜ Pr

(
xk = 1|1

)
and PF,k ≜ Pr

(
xk = 1|0

)
are used to denote

the probability of detection and false alarm of the kth sensor, respectively. In
what follows, it is assumed that PD,k ≥ PF,k, i.e. each sensor decision policy is
reasonably above the chance line.

Sensors communicate via a flat-fading multiple access channel [Ciuonzo et al.,
2012] with a Fusion Center (FC) equipped with N antennas, aided by an RIS com-
prising M elements, see Figure 4.1. The equivalent channels connecting the WSN
to the FC (Hd), the WSN to the RIS (Hr), and the RIS to the FC (G) represented as
complex-valued matrices of dimensions N × K, M × K, and N × M, respectively.

The N × 1 received signal vector y, collecting all the contributions from the
receive antennas at the FC, is described by the equation:

y =
⎛⎜⎜⎜⎝ G𝚯Hr

⏟⏟⏟
WSN–RIS–FC path

+ Hd
⏟⏟⏟

WSN–FC direct path

⎞⎟⎟⎟⎠D𝛼 x +𝒘. (4.1)

In contrast, 𝒘 ∼ ℂ(𝟎N , 𝜎
2
𝑤IN ) denotes a Gaussian noise vector characterized by

a zero mean and a scaled identity covariance matrix. Furthermore, the diagonal
matrix D𝛼 collects on its main diagonal the possibly unequal energies spent from
each sensor (𝛼k ≥ 0, ∀k ∈ ) for reporting its decision. Finally, in Eq. (4.1), the
diagonal matrix 𝚯 collects the RIS phase shifts (0 ≤ 𝜑m < 2𝜋, ∀m = 1,… ,M).

The model in Eq. (4.1) can be rewritten in compact form by leveraging the
definition of the N × K composite channel matrix He(𝚯) ≜

(
G𝚯Hr + Hd),

leading to:

y = He(𝚯)D𝛼 x +𝒘. (4.2)

Based on the aforementioned assumptions, the vector y|i has the following
statistical characterization in the second order:

𝔼{y|i} = He(𝚯)D𝛼 (2𝝆i − 𝟏K), (4.3)

Cov(y|i) = He(𝚯)D𝛼 Cov
(

x|i
)

D𝛼 He(𝚯)† + 𝜎2
𝑤 IN ,

PCov(y|i) = He(𝚯)D𝛼 Cov(x|i)D𝛼 He(𝚯)T ,

where Cov
(

x|i
)

denotes the hypothesis-conditional covariance matrix of
the decision vector. Additionally, the column vectors 𝝆1 ≜ [PD,1 …PD,K]T and
𝝆0 ≜ [PF,1 …PF,K]T collect the detection and false-alarm probabilities of all the
sensors, respectively. It is worth underlining that, given the improper nature
of the vector y|i, a complete second-order characterization must include the
pseudo-covariance PCov(y|i).
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The following of the chapter describes a design strategy which is intended to
achieve high (goal-oriented) performance, consisting in the joint design of a fusion
rule statisticΛ =  (y) and of the RIS shifts𝚯. This is to fully leverage the collective
sensing capabilities of the WSN.

4.3 Combined Design of Fusion Rule and RIS

The formulation of the optimal fusion rule for the current problem, as outlined
in [Kay, 1998], is given by:{

Λopt ≜ ln
[

p(y|1)
p(y|0)

]} ̂ = 1
≷

̂ = 0

𝛾, (4.4)

where ̂, Λopt, and 𝛾 represent the estimated hypothesis, the LLR, and the thresh-
old for LLR comparison, respectively. The threshold 𝛾 can be adjusted to maintain
a fixed system false-alarm rate or to minimize the probability of error [Kay, 1998].
It is worth noticing that the above result holds conditioned to any value of the RIS
coefficients in 𝚯.

An explicit expression for the LLR in Eq. (4.4) is obtained as

Λopt = ln
[∑

x∈K p(y|x)Pr(x|1)∑
x∈K p(y|x)Pr(x|0)

]

= ln
⎡⎢⎢⎢⎣
∑

x∈K exp
(
−∥y−He(𝚯)D𝛼x∥2

𝜎2
𝑤

)
Pr(x|1)∑

x∈K exp
(
−∥y−He(𝚯)D𝛼x∥2

𝜎2
𝑤

)
Pr(x|0)

⎤⎥⎥⎥⎦ .
(4.5)

The above expression leverages the independence of y from i, when condi-
tioning on the transmitted vector x. Direct inspection of Eq. (4.5) highlights that
LLR-based fusion requires a computational complexity growing as (2K), thus
becoming prohibitive in the case of a large number of sensors. Equally important,
the LLR is not amenable to a tractable closed-form performance analysis. This
implies that explicit expressions for system detection and false-alarm probabilities
are not available when LLR is adopted. Accordingly, RIS design leveraging
LLR-based fusion is not a viable option.

This kind of limitation for the LLR persists even when simpler evaluation met-
rics are considered, such as the deflection measure:

Di (Λ) ≜
(
𝔼{Λ|1} − 𝔼{Λ|0}

)2
var{Λ|i}

, (4.6)
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where D0(⋅) and D1(⋅) correspond to the normal [Picinbono, 1995] and mod-
ified [Quan et al., 2008] deflections, respectively. Accordingly, a simplified
approach for joint fusion rule and RIS design is developed in what follows.

Specifically, by constraining the fusion rule to be Widely-Linear (WL), the
deflection becomes tractable, enabling an efficient joint design for both the fusion
rule and RIS phase shifts, namely:

Λwl = a†y. (4.7)

In the above equation, a denotes the augmented vector of a, that is a ≜
[

aT a† ]T .
Also, the same considerations apply to y. WL fusion rules have demonstrated
appealing performance in comparable WSN scenarios, particularly in distributed
MIMO configurations without RIS support [Ciuonzo et al., 2015].

By leveraging WL fusion statistic, the deflection measure specializes into the
following form:

Di(Λwl) ≜

(
a†
(
𝔼{y|i} − 𝔼{y|0}

))2

a† Cov(y|i)a
. (4.8)

Additionally, it is evident that the design of the fusion rule can be streamlined
even further when employing the IS assumption [Lei and Schober, 2010; Ciuonzo
et al., 2015], i.e. Pr (x = 𝟏K|1) = Pr (x = −𝟏K |0) = 1. Indeed, when compared to
Eq. (4.3), the statistical characterization of y|i at second order simplifies as:

𝔼{y|i} = He(𝚯)D𝛼 (2i − 1)𝟏K .

Cov(y|i) = 𝜎2
𝑤 IN . (4.9)

PCov(y|i) = ON×N .

The last row highlights a null pseudo-covariance term when the IS assumption is
made. As a result, the proposed design demands less system knowledge since the
performance of the WSN’s local decisions is not necessary. Utilizing the IS assump-
tion, both deflection measures converge into a single, unified metric [Ciuonzo
et al., 2015]:

D
(

a,𝚯
)
= 4
𝜎2
𝑤

(
a† [He(𝚯)D𝛼 𝟏k

])2
a†a

, (4.10)

where He(𝚯) denotes the augmented matrix built as [He(𝚯)T He(𝚯)† ]T . Con-
sequently, the IS-simplified deflection presented in Eq. (4.10) can be maximized
by collaboratively optimizing both the WL vector a (which establishes the
fusion rule) and the phase shift matrix 𝚯 (which defines the RIS configuration).
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Hence, the resulting optimization is formulated as:

1 ∶

maximize
a ,𝚯

(a†[He(𝚯) D𝛼 𝟏k])2

a†a

subject to
‖‖a‖‖ = 1

𝚯 = diag(ej𝜑1 ,… , ej𝜑M )

. (4.11)

Note that each diagonal element in the phase shift matrix has unit modulus, as
specified via the second constraint of 1. The combination of this non-convex
constraint with the non-convex objective function categorizes 1 as a non-convex
problem.

In this context, problem 1 is solved efficiently resorting to the AO approach.
Specifically, the optimization method alternates between maximizing a (with RIS
coefficients fixed to 𝚯fix) and 𝚯 (with WL fusion statistic fixed to afix). Despite
leading to a suboptimal solution for nonconvex problems, AO has been shown to
be successful empirically and relevant in different applications. In the following,
the two update steps constituting the proposed AO approach are detailed.

Fusion rule update step (A): The optimization of the WL vector a for a fixed
phase-shift matrix 𝚯fix can be expressed in closed form. In particular, the design
problem for the WL vector is articulated as follows:

2 ∶ maximize‖a‖=1

(
a† [He(𝚯fix)D𝛼 𝟏k

])2
a†a

. (4.12)

2 can be recognized as a Cauchy–Schwarz problem [Ciuonzo et al., 2015],
whose optimal value of a is a vector aligned to He(𝚯fix)D𝛼 𝟏k, namely:

a⋆(𝚯fix) =
He(𝚯fix)D𝛼 𝟏k‖‖He(𝚯fix)D𝛼 𝟏k

‖‖ . (4.13)

RIS update step (B): Optimizing the phase-shift matrix 𝚯 with a fixed WL vector
afix presents a greater challenge. The related optimization problem is defined as
follows:

3 ∶ maximize
𝚯

(
a†

fix[He(𝚯) D𝛼 𝟏k]
)2

a†
fixafix

subject to 𝚯 = diag(ej𝜑1 ,… , ej𝜑M )
. (4.14)

Upon separating the influence of the RIS phase shifts, the IS-based deflection
presented in (4.10) can be reformulated in the following manner:

D
(

afix,𝚯
)
= 4
𝜎2
𝑤

𝜽̃
†𝚵
(

afix

)
𝜽̃, (4.15)
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where 𝜽̃ ≜
[
ej𝜑1 · · · ej𝜑M 1

]T and 𝚵(afix) ≜
(N†afix)(N

†afix)
†||afix||2 . In the latter term, the

complex-valued matrix N, sized 2N × 2(M + 1), is explicitly defined as follows:

N ≜

[(
Nr nd
)

ON×(M+1)

ON×(M+1)
(

Nr nd
)∗] , (4.16)

where Nr ≜ G diag(Hr D𝛼𝟏K) and nd ≜
(

Hd D𝛼 𝟏K
)
. Hence, Nr is an N × M

complex-valued matrix, whereas nd is an N × 1 complex-valued vector.
Therefore, optimization problem 3 can be recast in an equivalent form as:

4 ∶
maximize

𝜽̃

g(𝜽̃) = 𝜽̃†𝚵
(

afix

)
𝜽̃

subject to
{|𝜃m| = 1

}M
m=1 , 𝜃M+1 = 1

. (4.17)

Since the matrix 𝚵(afix) has rank-one, an unconstrained optimization would
imply the alignment of the vector 𝜽̃ towards the direction of the vector N†afix.
Unfortunately, the resulting problem is non-convex (and has no closed form)
because of the unit-modulus constraint of all the RIS elements. Accordingly, to
enhance the computational efficiency at the FC, the problem 4 can be solved
via the minorization–maximization technique [Sun et al., 2016].

Specifically, referring to 𝓁th iteration of AO and denoting with 𝜽̃⋆(𝓁) the current
optimized value for 𝜽̃, a lower bound on the objective function g(𝜽̃) is constructed.
This lower bound, denoted as f (𝜽̃|𝜽̃⋆(𝓁)), is designed to touch the objective function
at the point 𝜽̃. Subsequently, this lower bound is utilized as a surrogate objective
function, and the maximizer obtained from it is taken as the updated value of
𝜽̃ for the next AO iteration, represented as 𝜽̃⋆(𝓁+1). This approach guarantees
a monotonic increase in the objective value across iterations, ensuring that
g(𝜽̃⋆(𝓁+1)) ≥ g(𝜽̃⋆(𝓁)). Thus first-order optimality is attained by resorting to the afore-
mentioned strategy. The success of the minorization–maximization technique
relies on the careful construction of the surrogate objective function f (𝜽̃|𝜽̃⋆(𝓁)),
allowing for a straightforward determination of the maximizer 𝜽̃⋆(𝓁+1).

For the phase-shift matrix optimization problem 4, a surrogate objective
function is formulated by leveraging the convexity of g(𝜽̃) with respect to 𝜽̃.
Specifically, g(𝜽̃) is lower-bounded by its first-order approximation:

𝜽̃
†𝚵
(

afix

)
𝜽̃

⏟⏞⏞⏞⏞⏟⏞⏞⏞⏞⏟

g(𝜽̃)

≥ ℜ
{(

𝜽̃
⋆

(𝓁)

)†
𝚵
(

afix

)
𝜽̃

}
+ const

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

f
(
𝜽̃|𝜽̃⋆(𝓁))

, (4.18)

where “const” represents terms that do not depend on 𝜽̃. Thus, the phase-shift
optimization in each iteration of the AO process can be expressed as:

5 ∶ 𝜽̃
⋆

(𝓁+1) = arg max|𝜃m|=1, 𝜃M=1
ℜ
{(

𝜽̃
⋆

(𝓁)

)†
𝚵
(

afix

)
𝜽̃

}
. (4.19)



4.3 Combined Design of Fusion Rule and RIS 97

The closed-form optimal solution to 5 is given by:

∠𝜽̃⋆(𝓁+1) = ∠
(
𝚵
(

afix

)
𝜽̃
⋆

(𝓁)

)
, (4.20)

where ∠(⋅) denotes the entry-wise phase of the generic complex-valued vector.
This approach alternates between the closed-form updates in Eqs. (4.13)

[Step (A)] and (4.20) [Step (B)].

Algorithm 4.1 Joint fusion rule and RIS design via AO+MM (IS assumption)
1: Initialize: Construct initial guess 𝜃⋆(0), set 𝓁 = 0

2: repeat
3: Step (A): Keep 𝜃⋆(𝓁) fixed and update 𝑎 according to Eq. (4.13)

4: Step (B): Keep 𝑎 fixed and update 𝜃⋆(𝓁+1) via Eq. (4.20)

5: Update: Set 𝓁 ← 𝓁 + 1
6: until convergence

Thus, the IS-simplified deflection in Eq. (4.10) is ensured to grow monotonically
and approach a local optimum by exploiting the structural characteristics of the
AO procedure. For simplicity, the initial point 𝜽̃⋆(0) may be selected (other initial-
ization strategies are possible) as randomly generated phase-shifts from a uniform
distribution. The procedure presented is provably convergent in the value of the
objective because the objective function grows monotonically with the iteration
number. The overall procedure is summarized in Algorithm 4.1.

The computational complexity of the proposed IS-based joint design is
(Niter × (Cfus + Cris)), where Niter represents the total number of iterations in the
AO process. Here, Cfus and Cris correspond to the costs of the WL vector fusion
and RIS phase-shift matrix design, respectively. The specific costs for each step
are detailed in Table 4.1.

Table 4.1 Summary of the computational complexity required needed
for joint IS-based design for both fusion rule and RIS design steps
involved in the AO.

Step in AO Big-O complexitya)

Step (A): fusion rule design Cfus → (M + MN + N)
Step (B): RIS design Cris → ((M + 1)2 + MN + N)

a) M denotes the number of RIS elements, whereas N represents the number
of antennas at the FC.
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4.4 Performance Analysis

The design developed in the previous section is here validated in a DD scenario
analogous to that considered by previous literature [Chen et al., 2006; Ciuonzo
et al., 2012]. Specifically, the numerical setup considers a WSN made of K = 10
sensors. Regarding the sensing phase, local decisions regarding the phenomenon
of interest (POI) are assumed to be conditionally independent and identically dis-
tributed. Specifically, it is assumed (PD,k,PF,k) ≜ (0.5, 0.05), k ∈ .

In the reporting phase, all sensors transmit their decisions with uniform energy,
meaning 𝛼k = 1. The small-scale fading follows a Rayleigh distribution, while
the path loss is characterized by the model 𝜇, (d∕d0)−𝜈 , where 𝜇 = −30 dB. Here,
𝜇 = −30 dB denotes the path loss at a reference distance of 1 m. The path loss
exponent 𝜈 is set to 2 for the links between the WSN and the RIS, as well as the
links from the RIS to the FC, whereas it is set to 4 for the links directly connecting
the WSN to the FC. Sensor locations are uniformly and randomly spread in a
[0, 40] × [0, 40]m2 square. The RIS is positioned at [60, 20]m, while the FC is at
[65, 25]m. In the subsequent analysis, noise variance 𝜎2

𝑤 is fixed at −80 dBm.
The WSN system performance is evaluated in terms of the global probabilities

of false alarm PF0
≜ Pr{Λ > 𝛾|H0} and detection PD0

≜ Pr{Λ > 𝛾|H1}.
For the sake of completeness, the analysis also includes the concept of the

“observation bound,” which signifies the performance of the optimal decision
fusion rule under ideal channel conditions. This is expressed mathematically as
follows:

Pobs-bound
D0

=
K∑

j=𝜈

(
K
j

)
(PD) j (1 − PD)K−j. (4.21)

Pobs-bound
F0

=
K∑

j=𝜈

(
K
j

)
(PF) j (1 − PF)K−j.

Here, 𝜈 ∈ 0,… ,K serves as a discrete threshold. This bound provides a crucial
reference point for evaluating (i) the degradation in detection performance due to
interference from the distributed MIMO channel and (ii) the corresponding advan-
tages gained from the support of the RIS.

In the numerical results reported, the joint IS-based fusion rule and RIS
design is reported with “◾” markers. By contrast, the IS-based rule not aided by
an RIS [Ciuonzo et al., 2012, 2015] is represented with a “◽” marker. For the
sake of a complete analysis, the following performance analysis also includes
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Figure 4.2 PD0
versus PF0

for the specified rule and RIS configurations. Configuration
details: N = 4 antennas at the FC and RIS comprising M = 20 elements.

a configuration with an LLR-based fusion rule without an RIS and the same
fusion rule with an RIS whose phase shifts are designed according to the IS-based
criterion. The latter two counterparts a represented with “▿” and “▾” markers,
respectively.

Figure 4.2 illustrates the receiver operating characteristic (ROC), depicting the
relationship between PD0

and PF0
in a WSN featuring N = 4 antennas at the FC

and an RIS with M = 20 elements. The primary aim of this analysis is to evaluate
the performance enhancements achieved when an RIS supports the DD task. The
presented set of curves clearly demonstrates that the IS-based joint design yields
improved performance compared to an IS-based fusion rule that operates without
the assistance of an RIS [Ciuonzo et al., 2012, 2015].

In this scenario, the joint design also surpasses the performance of the
LLR without an RIS (denoted by “▿”). Furthermore, the IS-based RIS design
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Figure 4.3 Evaluation of PD0
versus PF0

for the optimized rule and RIS configurations
across different RIS codebook resolutions. Configuration details: N = 4 antennas at the FC
and RIS comprising M = 20 elements.

significantly enhances the detection capabilities of the WSN, as demonstrated by
the improved LLR when the proposed IS-based approach is used to configure the
RIS phase-shifts (denoted by “▾”).

Then, Figure 4.3 reports the ROC for the IS-based joint design by varying the
number of quantization bits associated with the phase values of the RIS coeffi-
cients designed. The aim is to investigate the performance degradation due to finite
resolution of the codebook associated to the RIS configuration. By looking at the
results, it is apparent that 2 bits are sufficient to represent the designed phases of
the RIS. This applies also to the case when the LLR is used as the relevant fusion
rule, for which only one-bit is sufficient.

Figure 4.4 illustrates the relationship between PD0
and the number of RIS ele-

ments M, with a fixed false-alarm rate PF0
= 0.01. The primary aim of this analysis

is to assess the detection improvements possible with a larger RIS. It is evident
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Figure 4.4 Analysis of PD0
as a function of M for the evaluated rule and RIS

configurations. The setup parameters include a false-alarm rate at the FC of PF0
= 0.01

and N = 4 antennas at the FC receiver.

that the IS design enhances detection performance when the size M of the RIS
increases. However, for the joint IS design, optimal performance levels off around
M ≈ 40 in this scenario. In comparison, the LLR achieves performance saturation
at M ≈ 20. This saturation for the LLR is mainly due to its reaching the maximum
achievable performance as dictated by the observation bound.

Finally, Figure 4.5 reports the PD0
versus the number of receive antennas N at the

FC. The aim is to understand the interplay between the number of receive anten-
nas and the RIS benefit for a relevant number of atoms. Performance highlights
an obvious detection rate improvement with N. Still, it is apparent that the same
improvement can be obtained with far less receive antennas when an optimized
RIS is used, e.g. close to 80% detection rate is obtained with only N = 4 antennas.
On the contrary, when no RIS is used, a larger number of antennas is required to
obtain the same performance, e.g. N = 64 antennas are needed to obtain a detec-
tion rate ≥75% with an IS-based rule with no RIS assistance.
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Figure 4.5 Evaluation of PD0
as a function of N for the assessed rule and RIS

configurations. The setup parameters include a false-alarm rate at the FC of PF0
= 0.01

and an RIS comprising M = 20 elements.

4.5 Conclusions and Further Reading

This chapter centered on developing practical fusion rules and RIS designs to facil-
itate channel-aware decision fusion in a distributed MIMO framework through
smart environments. Specifically, it presents a sensor-agnostic approach for a joint
fusion rule and RIS design grounded in the IS assumption, aimed at overcoming
the challenges posed by computational complexity and the absence of closed-form
performance metrics for the LLR. The resulting non-convex optimization prob-
lem is approached through AO and MM techniques, yielding a simple ping-pong
closed-form optimization method. While the proposed design may be subopti-
mal, numerical results highlight the significant advantages of employing an RIS
to enhance the capabilities of WSNs in performing the DD task.

Finally, this section ends with suggestions for the interested reader. Literature on
the use of smart surfaces for aiding decentralized inference is less developed [Fang
et al., 2021; Ahmed et al., 2022] than that dealing with RIS used for communica-
tion purposes. The study in Fang et al. [2021] addresses over-the-air computation
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for generic nomographic functions, which are not designed for dependent and
non-zero-mean decisions. The latter work tackles distributed estimation using a
single-antenna FC while incorporating additional secrecy objectives [Ahmed et al.,
2022]. Methodology wise, the use of deflection metric for optimization purposes in
DF dates back to channel-aware literature in DF, see Ciuonzo et al. [2015]. Finally,
from the optimization viewpoint, the principle of AO has been shown to be useful
in several applications related to design of wireless transceivers [Sun et al., 2016].
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5.1 Introduction

Wireless sensor networks (WSNs) play a crucial role across various domains, such
as disaster management, surveillance, military operations, healthcare, and more
[Akyildiz et al., 2002]. Typically, sensors send their observations to a fusion center
(FC) in these systems using a multiple access channel (MAC), where the FC uti-
lizes a well-designed decision rule to determine the absence/presence of a specific
phenomenon [Hall and Llinas, 1997]. However, the growing significance of these
applications and the rapid proliferation of sensors have resulted in a significant
bandwidth shortage in the sub-6 GHz spectrum, posing a considerable challenge
for traditional cellular networks [Rappaport et al., 2013].

To combat this spectrum crisis, millimeter-wave (mmWave) communication has
emerged as a promising solution, leveraging the unexplored spectrum from 30
to 300 GHz. MmWave communication is well-suited for applications requiring
high-speed and substantial bandwidth in 5G (fifth-generation) and beyond 5G
(B5G) WSNs, thereby alleviating congestion in the sub-6 GHz frequency bands.
The mmWave spectrum is particularly appealing for deploying WSN due to its
exceptionally short wavelength, enabling the compact arrangement of antennas
within constrained physical dimensions. This enables the installation of a siz-
able antenna array at the FC [Rappaport et al., 2013], facilitating simultaneous
connections and communication with numerous sensors, improving spectral effi-
ciency, reducing sensor power consumption, and supporting highly directional
beamforming to mitigate high-frequency propagation losses.

Wireless Sensor Networks in Smart Environments: Enabling Digitalization from Fundamentals to Advanced
Solutions, First Edition. Edited by Domenico Ciuonzo and Pierluigi Salvo Rossi.
© 2025 The Institute of Electrical and Electronics Engineers, Inc. Published 2025 by John Wiley & Sons, Inc.
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However, traditional fully digital transceiver architectures, which require a spe-
cific radio frequency (RF) chain for each antenna, are impractical for mmWave
massive multiple-input multiple-output (MIMO) systems due to the substantial
power consumption, complexity, and high cost. Consequently, hybrid combiners,
which process signals in both analog and digital domains and necessitate fewer
RF chains, are typically employed in these systems [El Ayach et al., 2012; Sohrabi
and Yu, 2015].

In the existing works concerning massive MIMO technology, two architectures
have gained popularity. The centralized (C-MIMO) configuration deploys an
extensive antenna array at an FC, located at the cell center, offering lower
deployment costs. Conversely, various FCs, each equipped with an extensive
antenna array, are positioned at different geographical locations within a cell in
the distributed (D-MIMO) topology. These FCs are interconnected via high-speed
optical fibers for data processing and aggregation [Kerpez, 1996; Clark et al.,
2001; Wang et al., 2008]. In D-MIMO systems, larger FC separation and shorter
distances to the closest FC may likely result in enhanced performance and lower
correlation.

In these architectures, transmitting local decisions to the FC can lead to perfor-
mance degradation since the FC lacks complete information about the observed
phenomenon. Moreover, complexity arises in optimizing local fusion rules to
minimize detection error and evaluating optimal local thresholds for each sensor
jointly with the global fusion rule. Hence, the complexity of finding optimal
local detectors could potentially grow exponentially. Additionally, existing works
have not utilized hybrid combiners at the FC to exploit the benefits of massive
MIMO and mmWave technologies for data fusion, leaving their detection rules
unknown.

To address these issues, this chapter investigates data fusion in both C- and
D-MIMO-based mmWave massive MIMO WSNs. The generalized likelihood
ratio test (GLRT) is employed to derive low-complexity decision rules based on
hybrid combining for both configurations, considering unknown spatially cor-
related parameter. The chapter also characterizes closed-form expressions for
the probabilities of false alarm (PFA) and detection (PD) under perfect channel
state information (CSI) along with the development of optimal sensor gains
for detection performance improvement. Considering the large-scale antenna
regime, power scaling laws are established for both configurations, demonstrating
reductions in sensor transmit power without compromising the system perfor-
mance. Finally, the chapter discusses a novel sparse Bayesian learning (SBL)
technique for channel estimation in a realistic scenario with CSI uncertainty.
The decision rules are determined for the imperfect CSI scenario, along with
simulation results.
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5.2 System Model

We consider a WSN employing mmWave and massive MIMO technologies, where
K single-antenna sensors are distributed randomly within a cell to monitor a signal
of interest (Θ ∈ ℝ), such that Θ ∈ {0, 𝜃}. This setup can be framed as a binary
hypothesis testing problem, where the null hypothesis 0 signifies Θ = 0, indicat-
ing the signal’s absence, while the alternative hypothesis 1 implies its presence.
The amplified measurement of the kth sensor is

xk = fk(akΘ + 𝜂k), k = 1, 2,… ,K, (5.1)

where ak is the observation constant, 𝜂k ∼  (0, 𝜎2
𝜂 ) is the additive white Gaus-

sian noise (AWGN) and fk is the complex gain. All K-amplified sensor measure-
ments are transmitted to the FC over MAC.

5.2.1 C-MIMO System

The C-MIMO system involves K sensors communicating with the FC. The FC
employs a huge M-element antenna array and NRF = K RF chains (M ≫ K), as
depicted in Figure 5.1a. Further, the FC utilizes a fully connected structure (FCS),
where each RF chain is linked to all M antennas. Considering a = [a1, a2,… , aK]T ,
the signal zC ∈ ℂM ×1 can be expressed as

zC = GFaΘ + GF𝜼 + v, (5.2)

(a) (b)

Figure 5.1 Different antenna topologies of the mmWave massive MIMO WSN:
(a) centralized (C-MIMO) and (b) distributed (D-MIMO).
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where G ∈ ℂM ×K is the mmWave channel from the sensors to the FC,
𝜼 ∈ ℂK ×1 is the noise vector, v ∼  (𝟎, 𝜎2

𝑣IM) is the AWGN at the FC, and
F = diag(f1, f2,… , fK) is the complex gain matrix. Further, the received signal
zC at the FC follows the complex Gaussian distribution zC ∼  (GFaΘ, 𝚺̃),
with covariance matrix as 𝚺̃ = 𝜎2

𝜂GFFHGH + 𝜎2
𝑣IM . The channel G is modeled as

G = HD1∕2, where H is the small-scale fading matrix and D = diag(𝛽1, 𝛽2,… , 𝛽K)
is the large-scale fading matrix accounting for path loss and shadowing. The
Saleh–Valenzuela channel model [Saleh and Valenzuela, 1987] is employed to
describe the kth sensor small-scale fading vector, denoted by hk, as

hk =
√

M
Lk

Lk∑
i=1
𝛼i

kar(𝜃i
k), (5.3)

where 𝜃i
k ∈ [0, 2π] is the angle of arrival (AoA) and 𝛼i

k ∼  (0, 1) is the complex
gain for the ith path. Further, the number of paths for the kth sensor Lk follows a
discrete uniform distribution Lk ∼  [1,L] and L denotes the maximum number
of paths. Defining 𝑣 = 2π

𝜆
d, 𝜆 as the carrier wavelength and d as the antenna spac-

ing, the receive array response vector ar(𝜃i
k) ∈ ℂM ×1 for an M-element uniform

linear array (ULA) is given by ar(𝜃i
k) =

1√
M

[
1, e j𝑣 sin(𝜃i

k),… , e j𝑣(M−1) sin(𝜃i
k)
]T

.

5.2.2 D-MIMO System

In the D-MIMO system, J FCs are uniformly distributed on a circle of radius
𝜌, satisfying rmin ≪ 𝜌 < R, where R and rmin denote the cell radius and the
minimum distance between the cell center and the FC, respectively. The FCs
are interconnected through high-capacity optical fiber backhaul, as depicted in
Figure 5.1b. Each FC is outfitted with an Nd-element antenna array and a single
RF chain, contributing to a total of NT = JNd antennas across all FCs. To ensure
a fair comparison with C-MIMO, we set NT = M, J = K, and NRF = K [Li et al.,
2018]. The signal zD, j ∈ ℂNd ×1 associated with the jth FC is

zD, j = GjFaΘ + GjF𝜼 + vj, j = 1, 2,… , J, (5.4)

where Gj ∈ ℂNd ×K is the mmWave channel from K sensors to the jth FC and
vj ∼  (0, 𝜎2

𝑣INd
) denotes the AWGN corresponding to the jth FC. Leveraging

the narrowband channel model [Saleh and Valenzuela, 1987], the channel vector

gk, j can be characterized as gk, j =
√

Nd𝛽k, j

Lk, j

∑Lk, j

i=1 𝛼
i
k, jar(𝜃i

k, j), where the definitions

of 𝛽k, j, Lk, j, 𝛼i
k, j, 𝜃

i
k, j, and ar(𝜃i

k, j) for the jth FC and the kth sensor are similar
to the centralized topology. Further, the received array response vector ar(𝜃i

k, j)

is given by ar(𝜃i
k, j) =

1√
Nd

[
1, e j𝑣 sin(𝜃i

k, j),… , e j𝑣(Nd−1) sin(𝜃i
k, j)
]T

and the signal zD, j in

(5.4) follows the complex Gaussian distribution zD, j ∼  (GjFaΘ, 𝚺̃j), with its
covariance matrix as 𝚺̃j = 𝜎2

𝜂GjFFHGH
j + 𝜎2

𝑣INd
.
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5.3 Problem Formulation

Considering the perfect CSI scenario, this section discusses the fusion rules based
on the proposed architecture for the unknown parameter detection in C- and
D-MIMO topologies.

5.3.1 C-MIMO: Fusion Rule for Perfect CSI

Leveraging the generalized likelihood ratio test (GLRT) framework in (5.2), the
likelihood function p(zC; 𝜃|1) for hypothesis 1 can be given as

p(zC; 𝜃|1) =
1|π𝚺̃| exp

(
− (zC − GFa𝜃)H 𝚺̃−1(zC − GFa𝜃)

)
. (5.5)

Further, the maximum-likelihood estimate (MLE) of the unknown parameter 𝜃
can be expressed as 𝜃̂ = ℜ(zH

C 𝚺̃
−1GFa)

aH FH GH 𝚺̃−1GFa
, determined by taking the derivative of the

logarithm of the likelihood function in (5.5) with respect to 𝜃 and setting it to zero.
The GLRT statistic TC,UP(zC) can be formulated as

TC,UP(zC) = ln

[
p(zC; 𝜃̂|1)

p(zC|0)

]
1

≷
0

𝛾. (5.6)

Employing the likelihood functions p(zC; 𝜃̂|1) and p(zC|0) for hypotheses 1
and 0, respectively, the aforementioned test simplifies to

TC,UP(zC) = ln
⎡⎢⎢⎢⎣

exp
(
−(zC − GFa𝜃̂)H 𝚺̃

−1
(zC − GFa𝜃̂)

)
exp

(
−zH

C 𝚺̃
−1

zC

) ⎤⎥⎥⎥⎦ . (5.7)

This test exhibits a high complexity of (M3 + M2K), escalating with M due to the
necessity of computing 𝚺̃

−1
∈ ℂM ×M . To address this challenge, a two-step archi-

tecture is exploited. The first step utilizes a hybrid combiner, comprising of an
analog combiner WRF,C ∈ ℂM ×K and a digital combiner WBB,C ∈ ℂK ×K , to process
the signal zC. The measurements obtained after the hybrid combining are com-
bined in the subsequent step to yield a global decision, as illustrated in Figure 5.2.
The analog combiner WRF,C =

[
ar(𝜃

i1
1 ),… , ar(𝜃

iK
K )
]

is computed by stacking the
receive array response vectors of K sensors linked with the maximum path gains.
For the kth sensor, ik denotes the path having the maximum gain |𝛼ik

k | and 𝜃ik
k is

the corresponding AoA [Li et al., 2018]. Leveraging the asymptotic orthogonality
characteristic of the mmWave massive MIMO channel [Zhou et al., 2017], it can
be deduced that

aH
r

(
𝜃

is
k

)
ar

(
𝜃

in
l

)
=
{

1, s = n and k = l,
0, s ≠ n or k ≠ l,

(5.8)
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Figure 5.2 Block diagram showcasing data fusion in a mmWave massive C-MIMO based
WSN.

when Lk = o(M), ∀k and M → ∞. Consequently, the digital combiner for the cor-
responding baseband channel can be characterized as WBB,C = WH

RF,CG, which
becomes diagonal by exploiting the property stated in (5.8), such that

[
WBB,C

]
k,k =√

M𝛽k
Lk
𝛼

ik
k . After implementing the hybrid combining on the signal zC, the resulting

signal yC ∈ ℂK ×1 is expressed as

yC = WH
BB,CWH

RF,C(GFaΘ + GF𝜼 + v), (5.9)

which on exploiting the property in (5.8) can be simplified as

yC = M𝚿FaΘ + M𝚿F𝜼 + ṽ. (5.10)

Here, 𝚿 = diag(𝜓1, 𝜓2,… , 𝜓K) is a diagonal matrix, where 𝜓k = 𝛽k
Lk
|𝛼ik

k |2, and the
effective noise ṽ = WH

BB,CWH
RF,Cv is distributed as ṽ ∼ 

(
𝟎,Cṽ

)
, with Cṽ =

𝜎2
𝑣M𝚿. Additionally, the distribution of yC is given by yC ∼ 

(
M𝚿FaΘ,𝚺C

)
,

where its diagonal covariance matrix is defined as 𝚺C = 𝜎2
𝜂M2𝚿FFH𝚿H + Cṽ and

[𝚺C]k,k = 𝜎2
𝜂M2𝜓2

k | fk|2 + 𝜎2
𝑣M𝜓k. Employing these quantities, the GLRT for the

hybrid combiner output yC can be expressed as

TC,UP(yC) = ℜ(yH
C𝚺

−1
C 𝚿Fa𝜃̂) =

||||||
K∑

k=1
ℜ

(
y∗C,k fkak

M𝜓k| fk|2𝜎2
𝜂 + 𝜎2

𝑣

)||||||
1

≷
0

𝛾 ′, (5.11)

where the MLE of 𝜃, determined using (5.10), is given by 𝜃̂ = ℜ(yH
C 𝚺

−1
C 𝚿Fa)

MaH FH𝚿H𝚺−1
C 𝚿Fa

. Note
that the aforementioned test exhibits a low complexity of (K), which is invari-
ant of M. On the contrary, the test in (5.7) is characterized by a complexity of
(M3 + M2K), which grows with M. Notably, TC,UP(yC) is a weighted linear com-
bination of complex Gaussian random variables yC,k, resulting in its distribution
being complex Gaussian. Further, the PD and PFA performance of TC,UP(yC) in
(5.11) is described below.
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Theorem 5.1 For mmWave massive C-MIMO WSN, the PD and PFA perfor-
mance of the test TC,UP(yC) for unknown parameter detection is

PD = Q

(
𝛾 ′ − 𝜇TC,UP|1

𝜎TC,UP|1

)
+ Q

(
𝛾 ′ + 𝜇TC,UP|1

𝜎TC,UP|1

)
,

PFA = Q

(
𝛾 ′ − 𝜇TC,UP|0

𝜎TC,UP|0

)
+ Q

(
𝛾 ′ + 𝜇TC,UP|0

𝜎TC,UP|0

)
, (5.12)

where the means 𝜇TC,UP|1
, 𝜇TC,UP|0

and the standard deviations 𝜎TC,UP|1
, 𝜎TC,UP|0

under alternate and null hypotheses, respectively, are given as

𝜇TC,UP|0
= 0, 𝜇TC,UP|1

=
K∑

k=1

M𝜓k| fk|2|ak|2𝜃
M𝜓k| fk|2𝜎2

𝜂 + 𝜎2
𝑣

, (5.13)

𝜎2
TC,UP|0

= 𝜎2
TC,UP|1

=
K∑

k=1

M𝜓k| fk|2|ak|2
2(M𝜓k| fk|2𝜎2

𝜂 + 𝜎2
𝑣)
. (5.14)

Proof: Refer to Chawla et al. [2022] for the proof.

5.3.2 D-MIMO: Fusion Rule for Perfect CSI

The location of the kth sensor and the jth FC in polar coordinates can be defined as
(rk, 𝜈k) and (𝜌j, 𝜙j) =

(
𝜌,

2π( j−1)
J

)
, respectively. Thus, the distance of the kth sensor

from the jth FC is 𝛿k, j =
√
𝜌2

j + r2
k − 2𝜌jrk cos(𝜙j − 𝜈k). The D-MIMO system per-

formance can be improved by optimally assigning sensors to their respective FCs
using the distance (D)-based FC selection approach [Li et al., 2018]. Let Q ∈ ℝK ×K

denotes the binary correction matrix such that QHQ = IK and𝚫 ∈ ℝK ×K represent
the distance matrix, where [𝚫]k, j = 𝛿k, j. The (k, j)th entry in 𝚫 is 1, i.e. [Q]k, j = 1,
if the kth sensor is allocated to the jth FC using the minimum distance criterion,
otherwise [Q]k, j = 0.

We assume that FCs are sufficiently separated to ensure the independence of
observation vectors zD, j, ∀j. Akin to the C-MIMO case, the received signals are
processed using a two-step processing architecture, as depicted in Figure 5.3. In
the initial step, the observation vector is processed at each FC using an RF com-
biner. The RF combiner at the jth FC is chosen as the array response vector with
the maximum path gain |𝛼ikj

kj , j
|, i.e. wRF, j = ar(𝜃

ikj

kj , j
) ∈ ℂNd ×1. Here, ikj

signifies the

ith path for the kj th sensor and 𝜃
ikj

kj, j
denotes the associated AoA. Leveraging the

asymptotic orthogonality property in (5.8), the RF combiner output z̃D, j for the jth
FC is

z̃D, j = wH
RF, j(GjFaΘ + GjF𝜼 + vj). (5.15)
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Figure 5.3 Block diagram depicting data fusion in a mmWave massive D-MIMO based
WSN.

All J RF combiner outputs are stacked together at the baseband processing unit
(BPU) to obtain z̃D = [z̃D,1, z̃D,2,… , z̃D,K]T , which is processed using Q to yield the
rearranged soft sensor decisions as

z̆D = Qz̃D = QWH
RF,D(G̃FaΘ + G̃F𝜼 + v̆), (5.16)

where v̆ = [vT
1 , v

T
2 ,… , vT

K]
T ∈ ℂKNd ×1, G̃ = [GT

1 ,G
T
1 ,… ,GT

K]T ∈ ℂKNd ×K and
WRF,D = diag(wRF,1,wRF,2,… ,wRF,K) ∈ ℂKNd ×K . These outputs are forwarded
to a central BPU for digital combining. The digital combiner is chosen as

WBB,D = QWH
RF,DG̃ ∈ ℂK ×K , which is diagonal with [WBB,D]k,k =

√
Nd𝛽k, jk

Lk, jk

𝛼
ik
k, jk

.

The digital combined output yD ∈ ℂK ×1 can be given as

yD = WH
BB,DQWH

RF,D(G̃FaΘ + G̃F𝜼 + v̆), (5.17)

which can be further simplified using (5.8) as

yD = Nd𝚿DFaΘ + Nd𝚿DF𝜼 + v′, (5.18)

where the noise v′ = WH
BB,DQWH

RF,Dv̆ is distributed as v′ ∼ 
(
𝟎,Cv′

)
, with

Cv′ = 𝜎2
𝑣Nd𝚿D, 𝚿D = diag(𝜓1, j1

, 𝜓2, j2
,… , 𝜓K, jK

) and 𝜓k, jk
=

𝛽k, jk
Lk, jk

|𝛼ik
k, jk
|2. The vec-

tor yD follows Gaussian distribution, i.e. yD ∼ 
(

Nd𝚿DFaΘ,𝚺D
)
, where

𝚺D = 𝜎2
𝜂N2

d𝚿DFFH𝚿H
D + Cv′ is diagonal with [𝚺D]k,k = 𝜎2

𝜂N2
d𝜓

2
k, jk
| fk|2 + 𝜎2

𝑣Nd𝜓k, jk
.

The hybrid combiner outputs are finally combined to form the global deci-
sion. Hence, the GLRT statistic TD,UP(yD) for the D-MIMO architecture can be
formulated as

TD,UP(yD) = ln

[
p(yD; 𝜃̂|1)

p(yD|0)

]
1

≷
0

𝛾 ′

= ℜ(yH
D𝚺

−1
D 𝚿DFa𝜃̂) =

||||||
K∑

k=1
ℜ

(
y∗D,k fkak

Nd𝜓k, jk
| fk|2𝜎2

𝜂 + 𝜎2
𝑣

)|||||| , (5.19)
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where the MLE can be expressed as 𝜃̂ = ℜ(yH
D𝚺

−1
D 𝚿DFa)

NdaH FH𝚿H
D𝚺

−1
D 𝚿DFa

. Observe that the detec-
tor TD,UP(yD) exhibits a complexity of (K), which does not depend on Nd. On
the contrary, the detector TD,UP(zD), which doesn’t employ the hybrid combining
architecture, has a complexity of (N3

d + N2
dK). Next, we analyze the analytical

performance of the above detector.

Theorem 5.2 For mmWave massive D-MIMO WSN, the unknown parameter
detection performance of the test TD,UP(yD) in (5.19), characterized by probabilities
of detection PD and false alarm PFA, can be determined as

PD = Q

(
𝛾 ′ − 𝜇TD,UP|1

𝜎TD,UP|1

)
+ Q

(
𝛾 ′ + 𝜇TD,UP|1

𝜎TD,UP|1

)
, (5.20)

PFA = Q

(
𝛾 ′ − 𝜇TD,UP|0

𝜎TD,UP|0

)
+ Q

(
𝛾 ′ + 𝜇TD,UP|0

𝜎TD,UP|0

)
, (5.21)

where the means 𝜇TD,UP|0
, 𝜇TD,UP|1

and the standard deviations 𝜎TD,UP|0
, 𝜎TD,UP|1

for the null and alternative hypotheses, respectively, can be given as

𝜇TD,UP|0
= 0, 𝜇TD,UP|1

=
K∑

k=1

Nd𝜓k, jk
| fk|2|ak|2𝜃

Nd𝜓k, jk
| fk|2𝜎2

𝜂 + 𝜎2
𝑣

, (5.22)

𝜎2
TD,UP|1

= 𝜎2
TD,UP|0

=
K∑

k=1

Nd𝜓k, jk
| fk|2|ak|2

2(Nd𝜓k, jk
| fk|2𝜎2

𝜂 + 𝜎2
𝑣)
. (5.23)

Proof: On similar lines as Theorem 5.1.

5.4 Sensor Gain Optimization

This section discusses the framework to determine optimal sensor gains for C- and
D-MIMO architectures.

5.4.1 Optimized Sensor Gains for C-MIMO

One can enhance the detection performance of the C-MIMO system through the
maximization of the deflection coefficient [Kay, 1993a]. Leveraging Theorem 5.1,
the deflection coefficient d2

C,UP can be expressed as

d2
C,UP =

(𝜇TC,UP|1
− 𝜇TC,UP|0

)2

𝜎2
TC,UP|0

=
K∑

k=1

2M𝜓k| fk|2|ak|2𝜃2

M𝜓k| fk|2𝜎2
𝜂 + 𝜎2

𝑣

. (5.24)

Defining pk = | fk|2 and P as the total transmit power, the optimization problem
using (5.24) can be formulated as



116 5 Data Fusion in Millimeter Wave Massive MIMO Wireless Sensor Networks

min.
pk

K∑
k=1

−
M𝜓kpk|ak|2

M𝜓kpk𝜎
2
𝜂 + 𝜎2

𝑣

s.t.
K∑

k=1
pk = P,

pk ≥ 0, 1 ≤ k ≤ K. (5.25)

Its Lagrangian is expressed as

(pk, 𝜆, 𝜇k) =
K∑

k=1
−

M𝜓kpk|ak|2
M𝜓kpk𝜎

2
𝜂 + 𝜎2

𝑣

+ 𝜆

( K∑
k=1

pk − P

)
−

K∑
k=1
𝜇kpk. (5.26)

On leveraging the Karush–Kuhn–Tucker (KKT) conditions [Boyd and Vanden-
berghe, 2004], the optimal sensor power pk is given as

pk =

(√ |ak|2𝜎2
𝑣

𝜆M𝜓k𝜎
4
𝜂

−
𝜎2
𝑣

M𝜓k𝜎
2
𝜂

)+

, (5.27)

where (b)+ = b, for b ≥ 0 and 0 otherwise. Additionally, 𝜆 is confined within
the range [𝜆l, 𝜆u] and is selected to satisfy the constraint

∑K
k=1 pk = P, where

𝜆l = min.
k

{
M𝜓k|ak|2𝜎2

𝑣

(M𝜓kP𝜎2
𝜂
+𝜎2

𝑣
)2

}
and 𝜆u = max.

k

{
M𝜓k|ak|2

𝜎2
𝑣

}
. The value of 𝜆 can be deter-

mined by employing a simple bisection search over [𝜆l, 𝜆u].

5.4.2 Optimized Sensor Gains for D-MIMO

Following a similar approach to that of C-MIMO, one can obtain the optimal sen-
sor gains for the D-MIMO setup as

pk =

(√ |ak|2𝜎2
𝑣

𝜆Nd𝜓k, jk
𝜎4
𝜂

−
𝜎2
𝑣

Nd𝜓k, jk
𝜎2
𝜂

)+

, (5.28)

where the determination of 𝜆 involves employing a traditional bisection search

over [𝜆l, 𝜆u], with 𝜆l = min.
k

{
Nd𝜓k, jk

|ak|2𝜎2
𝑣

(Nd𝜓k, jk
P𝜎2

𝜂
+𝜎2

𝑣
)2

}
and 𝜆u = max.

k

{
Nd𝜓k, jk

|ak|2
𝜎2
𝑣

}
.

5.5 Power Scaling Laws

This section delves into the asymptotic performance analysis and unveils the
power scaling laws for data fusion in C- and D-MIMO based WSNs. The analysis
demonstrates substantial power conservation and improved sensor longevity.
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Next, we examine the performance of TC,UP(yC), derived in (5.11), in the large
antenna regime considering uniform and optimal transmit gains.

5.5.1 Uniform Transmit Gains

Under the uniform transmit gain scheme, we allocate equal transmit power to all
sensors, i.e. pk = | fk|2 = p = P∕K and chose power scaling as p = p̃∕M, with p̃ as
the average transmit power. Using these quantities, the asymptotic performance
of the detector TC,UP(yC) is discussed next.

Lemma 5.1 Considering uniform transmit gains and M → ∞, the asymptotic
performance, characterized by probabilities of detection Pa

D,u and false alarm Pa
FA,u,

for the C-MIMO detector in (5.11) can be expressed as

Pa
D,u = Q(𝛾 ′ − 𝜇a

TC,UP|1,u
) + Q(𝛾 ′ + 𝜇a

TC,UP|1,u
),

Pa
FA,u = Q(𝛾 ′ − 𝜇a

TC,UP|0,u
) + Q(𝛾 ′ + 𝜇a

TC,UP|0,u
), (5.29)

where the normalized asymptotic means 𝜇a
TC,UP|0,u

and 𝜇a
TC,UP|1,u

for the null and
alternate hypotheses, respectively, are given as

𝜇a
TC,UP|0,u

= 0, 𝜇a
TC,UP|1,u

=

( K∑
k=1

2p̃𝜓k|ak|2𝜃2

p̃𝜓k𝜎
2
𝜂 + 𝜎2

𝑣

)1∕2

. (5.30)

Proof: Refer to Chawla et al. [2022] for the proof.

5.5.2 Optimal Transmit Gains

Considering sensor transmit power as pk = | fk|2, power scaling as pk = p̃k∕M,

where p̃k =
(√|ak|2𝜎2

𝑣

𝜆̃𝜓k𝜎
4
𝜂

− 𝜎2
𝑣

𝜓k𝜎
2
𝜂

)+

, and modified KKT multiplier as 𝜆̃ = 𝜆∕M,

the value of 𝜆̃ can be obtained through a straightforward bisection search over

[𝜆̃l, 𝜆̃u], where 𝜆̃l = min.
k

{
𝜓k|ak|2𝜎2

𝑣

(P𝜓k𝜎
2
𝜂
+𝜎2

𝑣
)2

}
and 𝜆̃u = max.

k

{
𝜓k|ak|2
𝜎2
𝑣

}
. Using the above

quantities, the asymptotic probabilities, Pa
D,o and Pa

FA,o, for the optimal sensor
transmit gains can be determined by substituting p̃ with p̃k in (5.30).

For uniform and optimal sensor transmit gains, the asymptotic performance of
the D-MIMO detector TD,UP(yD) in (5.19), as Nd → ∞, mirrors that of the C-MIMO.
From the results, it can be deduced that scaling down the sensor transmit power by
1∕M and 1∕Nd for C-MIMO and D-MIMO systems, respectively, does not degrade
the detection performance. This allows for significant power savings, crucial for
extending sensor lifetime in practical WSN deployments within future wireless
networks.
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5.6 SBL-Based CSI Estimation

In this section, we discuss the SBL framework [Wipf and Rao, 2004] for CSI
acquisition and decision rules for both antenna topologies. We consider an M size
angular grid to characterize the unknown CSI. The AoAs are selected as 𝚽R =
{𝜙𝑣 ∶ 𝜙𝑣 ∈ [0, π],∀ 1 ≤ 𝑣 ≤ M} such that sin(𝜙𝑣) =

2
M
(𝑣 − 1) − 1,∀𝑣 [Lee et al.,

2016]. Employing these quantized angles, the receive array response dictionary
matrix AR,C ∈ ℂM ×M can be defined as AR,C = [aR,C(𝜙1), aR,C(𝜙2),… , aR,C(𝜙M)],
where AR,CAH

R,C = AH
R,CAR,C = IM . Consequently, the channel matrix can be

characterized as G = AR,CHb, with Hb = [hb,1,hb,2,… ,hb,K] being the equivalent
beamspace channel matrix. The kth sensor channel vector is gk = AR,Chb,k
and the vectorized version of G, denoted by g ∈ ℂMK ×1, can be expressed
as g = vec(G) = 𝚵Chb, where 𝚵C = [IK ⊗AR,C] ∈ ℂMK ×MK . Moreover, the
beamspace channel vector hb = vec(Hb) is obtained by the columnwise stacking
of the vectors in Hb.

For the D-MIMO architecture, we utilize an Nd size angular grid and AoAs
are chosen from 𝚽R = {𝜙n ∶ 𝜙n ∈ [0, π],∀1 ≤ n ≤ Nd}. The angle selection proce-
dure is akin to the C-MIMO scenario. Further, the vectorized channel vector gj ∈
ℂNdK ×1 is expressed as gj = vec(Gj) = 𝚵Dhb, j, where hb, j = vec(Hb, j) denotes the
beamspace channel vector at the jth FC, 𝚵D = [IK ⊗AR,D] ∈ ℂNdK ×NdK and AR,D =
[aR,D(𝜙1),… , aR,D(𝜙Nd

)] ∈ ℂNd ×Nd represents the receive array response dictionary
matrix.

Considering Mf = M∕K combining frames for channel estimation, the training
RF combiner F(l)

C ∈ ℂM ×K during the lth frame is chosen as an M × K-submatrix
of the normalized discrete Fourier transform (DFT) matrix F ∈ ℂM ×M .
Hence, the RF combiner output Y(l) ∈ ℂK ×K at the FC can be given as Y(l) =√pp

(
F(l)

C

)H
GXp +

(
F(l)

C

)H
N, where pp is the training power, N = [n1,… ,nK]

is the AWGN matrix with nk ∼ 
(
𝟎, 𝜎2

nIM
)

and the training matrix Xp is
chosen as IK . The concatenated RF combiner output Y =

[
(Y(1))T ,… , (Y(Mf ))T]T ,

corresponding to Mf frames, can be expressed as

Y =
√

ppFHGXp + N, (5.31)

where F =
[
F(1)

C ,… ,F(Mf )
C

]
and N =

[
NHF(1)

C ,… ,NHF(Mf )
C

]H
. Further, the vector-

ized version of the RF combiner output Y can be given as

y =
√

pp𝚽𝚵Chb + ñ =
√

ppShb + ñ, (5.32)

where the equivalent noise ñ = vec(FHN) is distributed as ñ ∼  (𝟎,Cñ), with
Cñ = 𝜎2

nIMK , 𝚽 = (XT
p ⊗ FH) ∈ ℂMK ×MK and S ≜ 𝚽𝚵C ∈ ℂMK ×MK denotes the

equivalent sensing matrix satisfying SHS = IMK . Utilizing the received signal y,
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the step-by-step procedure to obtain the SBL-based beamspace channel estimate
ĥb is outlined in Algorithm 5.1.

Algorithm 5.1 SBL-based mmWave massive MIMO channel estimation
Input: Sensing matrix 𝐒, pilot power pp, pilot output 𝐲 and stopping

parameter 𝜖

1 Initialization: 𝚪̂(0) = 𝐈MK
2 Fix 𝚪̂(−1) = 𝟎MK ×MK and m = 0
3 while ‖‖‖𝚪̂(m) − 𝚪̂(m−1)‖‖‖F

> 𝜖 do
4 E-step: Calculate a posteriori mean and covariance

5 𝝁(m) =√pp 𝚺(m)𝐒H 𝐂−1
𝐧̃ 𝐲; 𝚺(m) =

(
pp𝐒H𝐂−1

𝐧̃ 𝐒 + (𝚪̂(m))−1
)−1

6 M-step: Perform hyperparameter estimation
7 for i = 1, 2,… ,MK do
8

[
𝚪̂(m+1)]

i,i
= |𝝁(m)(i)|2 + [𝚺(m)]

i,i

9 end for
10 m ← m + 1
11 end while

Output: 𝐡̂b = 𝝁(m)

5.6.1 C-MIMO: Fusion Rule for Imperfect CSI

On employing Algorithm 5.1, the SBL-based beamspace channel estimate,
upon convergence, for the centralized topology is given by ĥb = 𝝁(m), with 𝝁(m)

being the a posteriori mean. Additionally, the a posteriori covariance matrix
𝚺 = 𝚺(m) ∈ ℂMK ×MK is diagonal because 𝚪̂

(m)
, SHS = IMK and Cñ = 𝜎2

nIMK are
diagonal. Hence, the SBL estimate of G can be expressed as Ĝ = AR,CĤb, where
Ĥb = vec−1(ĥb). Further, the estimation error  = [e1,… , eK] can be defined
as  = Ĝ − G = AR,Cb, where b = Ĥb − Hb is the beamspace estimation
error. The estimation error of the kth sensor is distributed as ek ∼  (𝟎,Cek

),
with Cek

= AR,C𝚺kAH
R,C being the error covariance matrix of the kth sensor and

𝚺k = 𝚺
[
(k − 1)M + 1 ∶ kM, (k − 1)M + 1 ∶ kM

]
. Hence, the received signal under

imperfect CSI conditions can be reformulated as

zC = ĜFaΘ − FaΘ + ĜF𝜼 − F𝜼 + v. (5.33)

Even for the imperfect CSI scenario, we utilize a similar two-step architecture
to minimize the detector’s complexity. The first step involves a hybrid com-
biner, defined as WC = W̃RF,CW̃BB,C ∈ ℂM ×K , at the FC. The RF combiner
W̃RF,C = [aR,C(𝜙i1

), aR,C(𝜙i2
),… , aR,C(𝜙iK

)] is determined by concatenating K
receive array response vectors having the maximum estimated path gains in
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Ĥb. Further, the index ik corresponds to the maximum estimated path gain
in the kth column of Ĥb and the baseband combiner W̃BB,C is defined as
W̃BB,C = W̃H

RF,CĜ ∈ ℂK ×K .
Leveraging the asymptotic orthogonality characteristic of the mmWave massive

MIMO channel and considering distinct AoAs for all K sensors, the product of
matrices W̃H

RF,CAR,C yields a permutation matrix. In each row of this matrix, K
entries are unity, while the remaining entries are approximately 0. Consequently,
the matrix W̃BB,C becomes diagonal and its kth diagonal element is [W̃BB,C]k,k =
ĥik ,k = [Ĥb]ik ,k. Following the hybrid combining, the resulting output signal ỹC can
be formulated as

ỹC = ĞFaΘ − WH
CFaΘ + ṽ,

where Ğ = WH
C Ĝ is the effective channel and ṽ = WH

C (ĜF𝜼 − F𝜼 + v). Under
both hypotheses, the signal ỹC is distributed as

0 ∶ ỹC ∼ 
(
𝟎,Cṽ

)
, 1 ∶ ỹC ∼ 

(
ĞFa𝜃,C

𝜼̃

)
, (5.34)

where Cṽ = 𝜎2
𝜂 ĞFFHĞH + 𝜎2

𝜂WH
C C1WC + 𝜎2

𝑣WH
C WC, C

𝜼̃
= WH

C C2WC + Cṽ,
C1 = AR,C(

∑K
k=1 | fk|2𝚺k)AH

R,C, and C2 = AR,C(
∑K

k=1 |ak|2| fk|2𝚺k)AH
R,C. The

covariance matrices are diagonal, with Cṽ = diag(𝜎2
𝑣̃,1, 𝜎2

𝑣̃,2,… , 𝜎2
𝑣̃,K) and

C
𝜼̃
= diag(𝜎2

𝜂̃,1, 𝜎
2
𝜂̃,2,… , 𝜎2

𝜂̃,K), indicating the independence of observations across
different sensors. Employing the MLE [Kay, 1993b], the unknown parameter 𝜃 is
estimated. Using these quantities, the GLRT statistic can be formulated as

TC,UIP(ỹC) = ỹH
C (C

−1
ṽ − C−1

𝜼̃
)ỹC + 2ℜ(ỹH

C C−1
𝜼̃

ĞFa𝜃̂) − 𝜃̂2aHFHĞHC−1
𝜼̃

ĞFa.

On substituting 𝜃̂ =
ℜ(ỹH

C C−1
𝜼̃

ĞFa)

aH FH ĞH C−1
𝜼̃

ĞFa
in the above expression, it reduces to

TC,UIP(ỹC) = ỹH
C (C

−1
ṽ − C−1

𝜼̃
)ỹC +

[ℜ(ỹH
C C−1

𝜼̃
ĞFa)]2

aHFHĞHC−1
𝜼̃

ĞFa
. (5.35)

It is mathematically challenging to characterize the detection performance of the
above test [Chawla et al., 2021a]. Hence, it can be approximated as

TC,UIP(ỹC) ≈ ỹH
C XCỹC

1

≷
0

𝛾̃ , (5.36)

where XC = (C−1
ṽ − C−1

𝜼̃
) +

C−1
𝜼̃

ĞFaaH FH ĞH C−1
𝜼̃

aH FH ĞH C−1
𝜼̃

ĞFa
. Further, the detection performance of

TC,UIP(ỹC), characterized by PD and PFA, can be expressed as

PD ≈ Q𝜒2
lC,UD

(𝜆C,UD)(𝛾̃), PFA ≈ Q𝜒2
lC,UF

(𝜆C,UF )(𝛾̃). (5.37)

Here, lC,UD, lC,UF and 𝜆C,UD, 𝜆C,UF denote the degrees of freedom and the
non-centrality parameters of the chi-squared random variables 𝜒2

lC,UD
(𝜆C,UD) and
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𝜒2
lC,UF

(𝜆C,UF), respectively. Utilizing the first four cumulants of TC,UIP(ỹC), these
quantities can be obtained using the steps given in Chawla et al. [2022].

5.6.2 D-MIMO: Fusion Rule for Imperfect CSI

The estimated beamspace mmWave channel at the jth FC in the distributed
architecture, upon convergence, can be expressed as ĥb, j = 𝝁

(m)
j , where 𝝁

(m)
j

denotes the a posteriori mean. Further, the SBL estimate corresponds to the jth FC
can be given as Ĝj = AR,DĤb, j, where Ĥb, j = vec−1(ĥb, j). The associated estimation
error can be defined as  j = [e1, j,… , eK, j] = AR,Db, j, where b, j = Ĥb, j − Hb, j
denotes the beamspace estimation error. Moreover, the kth sensor estima-
tion error is distributed as ek, j ∼  (𝟎,Cek, j

), where Cek, j
= AR,D𝚺k, jAH

R,D and
𝚺k, j = 𝚺j

[
(k − 1)M + 1 ∶ kM, (k − 1)M + 1 ∶ kM

]
∈ ℂNd ×Nd represents the a

posteriori covariance matrix for the kth sensor and the jth FC. Using the above
quantities, the received signal zD, j at the jth FC is

zD, j = (Ĝj −  j)F𝜼 + (Ĝj −  j)FaΘ + vj. (5.38)

Next, the received signal at the jth FC is processed using an RF combiner,
defined as w̃RF, j = aR,D(𝜙ikj

), where the index ikj
corresponds to the max-

imum estimated gain in the kjth column of Ĥb, j. Subsequently, all K RF
combiner outputs are consolidated at the BPU and then processed using
the correction matrix Q to rearrange the observations based on the sensors.
These rearranged observations are then combined using the baseband com-
biner W̃BB,D = QW̃H

RF,DǦ ∈ ℂK ×K , where Ǧ = [Ĝ
T
1 , Ĝ

T
2 ,… , Ĝ

T
K]T denotes the

stacked channel matrix and W̃RF,D = diag{w̃RF1
, w̃RF2

,… , w̃RFK
} ∈ ℂNdK ×K .

Further, the baseband combiner becomes diagonal on leveraging the asymp-
totic orthogonality property of mmWave massive MIMO channel such that
[W̃BB,D]k,k = ĥik ,k, jk

= [Ĥb, jk
]ik ,k. The hybrid combiner output ỹD is characterized as

ỹD = W̃H
D
[
(Ǧ − ̃)F𝜼 + (Ǧ − ̃)FaΘ + ṽ

]
, (5.39)

where the quantities ̃ =
[


T
1 ,

T
1 ,… ,T

K
]T , W̃D = W̃RF,DQHW̃BB,D, and

ṽ =
[
vT

1 , v
T
2 ,… , vT

K
]T . Defining ĞD = W̃H

D Ǧ ∈ ℂK ×K as the equivalent channel
matrix and v̆ = W̃H

D [(Ǧ − ̃)F𝜼 + ṽ] as the equivalent noise, the signal in (5.39) is
distributed as

0 ∶ ỹD ∼ 
(
𝟎,Cv̆

)
, 1 ∶ ỹD ∼  (ĞDFa𝜃,C

𝜼̆
). (5.40)

The covariance matrices Cv̆ = 𝜎2
𝜂W̃H

D C3W̃D + 𝜎2
𝜂 ĞDFFHĞH

D + 𝜎2
𝑣W̃H

D W̃D and C
𝜼̆
=

W̃H
D C4W̃H

D + Cv̆ are diagonal, where C3 = 𝚵DC𝚺𝚵H
D , C𝚺 = diag(

∑K
k=1(| fk|2𝚺k,1),

… ,
∑K

k=1(| fk|2𝚺k,K)), and C4 is determined by substituting fk with akfk
in C3. Consequently, K sensors have independent soft decisions. Defining
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C
𝜼̆
= diag(𝜎2

𝜂̆,1,… , 𝜎2
𝜂̆,K) and Cv̆ = diag(𝜎2

𝑣̆,1,… , 𝜎2
𝑣̆,K), the unknown parameter

estimate is derived utilizing the MLE [Kay, 1993b]. On substituting 𝜃̂, the GLRT
statistic for the D-MIMO architecture can be given as

TD,UIP(ỹD) ≈ ỹH
D XDỹD

1

≷
0

𝛾̃ , (5.41)

where XD =
(

C−1
v̆ − C−1

𝜼̆

)
+

C−1
𝜼̆

ĞDFaaH FH ĞH
D C−1

𝜼̆

aH FH ĞH
D C−1

𝜼̆
ĞDFa

. Further, the system performance

can be characterized in terms of PD and PFA, as

PD = Q𝜒2
lD,UD

(𝜆D,UD)(𝛾̃), PFA = Q𝜒2
lD,UF

(𝜆D,UF )(𝛾̃), (5.42)

where 𝜒2
lD,UD

(𝜆D,UD) and 𝜒2
lD,UF

(𝜆D,UF) denote the noncentral chi-squared random
variables with degrees of freedom as lD,UD and lD,UF and noncentrality parameters
as 𝜆D,UD and 𝜆D,UF , respectively.

5.7 Simulation Results

This section demonstrates the effectiveness of the proposed C-MIMO and
D-MIMO detectors in various scenarios. For the centralized architecture, consider
a ring-shaped cell containing K = 12 sensors dispersed randomly within the
region [rmin,R]. Here, cell radius R and the minimum distance between the FC
and the sensors rmin are selected as R = 200 m and rmin = 1 m [Chawla et al.,
2021b]. For the distributed topology, the sensors are assumed to be randomly
distributed within the range [0, 𝜌 − rmin] ∪ [𝜌 + rmin,R], with 𝜌 = 0.6R being the
radius of the circle where the FCs are positioned [Li et al., 2018].

Defining zk as log-normal random variable with mean 𝜇z = 4 dB and standard
deviation 𝜎z = 2 dB, the large-scale fading coefficient for C-MIMO can be defined
as 𝛽k = zk(rmin∕rk)𝜈 , where the path-loss exponent 𝜈 is chosen as 𝜈 = 2 [Ngo et al.,
2013]. For D-MIMO, the large-scale fading coefficient for the kth sensor and the
jth FC is defined as 𝛽k, j = zk, j(rmin∕𝛿k, j)𝜈 , where zk, j is log-normal distributed hav-
ing mean 𝜇z and standard deviation 𝜎z. The carrier frequency fc is chosen as fc =
28 GHz, d = 𝜆∕2 and the noise variances at the FC 𝜎2

𝑣 and the sensors 𝜎2
𝜂 are chosen

as 0.7 and 0.2, respectively.
In Figure 5.4a, the receiver operating characteristic (ROC) comparison is

illustrated for the C-MIMO detector, given in (5.11), for the unknown parameter
detection. Notably, the simulation plots closely align with the analytical curves,
affirming the validity of the analytical expressions. Additionally, an improved
detector performance is observed, achieved through optimal sensor gain alloca-
tion, compared to the detector employing uniform transmit gains. Figure 5.4b
analyzes the asymptotic performance of the proposed detector in (5.11).
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Figure 5.4 PD versus PFA plots of TC,UP(yC) for comparing (a) theoretical and simulated
performance of uniform and optimal sensor gain with M = 250 antennas; (b) asymptotic
performance for uniform sensor transmit gains with M ∈ {360, 720, 1440} and P = 20 dB.

The performance is contrasted against the associated asymptotic theoretical
expressions determined in Lemma 5.1. The findings indicate that as the sensor
transmit power is scaled as p = p̃∕M, the simulated plots converge toward the
asymptotic counterpart, promising substantial power savings in practical WSNs.

For the distributed architecture, Figure 5.5 investigates the detection perfor-
mance of the proposed detector in (5.19). In Figure 5.5a, a close alignment is
observed between the simulated plots and the analytical results. Additionally, opti-
mal gain allocation leads to a substantial enhancement in detection performance
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simulated performance of uniform and optimal sensor gain with NT = 480; (b) asymptotic
performance for uniform sensor transmit gains with NT ∈ {360, 720, 1440} and
P = 10 dB.
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(NT ), where sensors are distributed in the region [0.5R,R].

compared to the uniform transmit gain allocation scenario. Figure 5.5b depicts
the asymptotic performance of the D-MIMO detector with uniform transmit
gains. Notably, the ROC plots converge toward the asymptotic counterpart as the
sensor transmit gain is scaled as pk = p̃k∕Nd, for NT ∈ {360, 720, 1440}.

Figure 5.6a analyzes the impact of normalized radius r∕R on detection perfor-
mance, when sensors are uniformly distributed on a circle (rk = r, 1 ≤ k ≤ K).
A comparison is drawn between C-MIMO and D-MIMO detectors, derived in
(5.11) and (5.19), respectively. Simulations, conducted with M = NT = 480 and
PFA = 0.1, highlight the superiority of D-MIMO performance over C-MIMO in the
region [0.5R,R]. Notably, D-MIMO peaks at r∕R = 0.6 due to sensor proximity to
their operating FCs located on the circle of radius 𝜌 = 0.6R, leading to substantial
enhancement in detection performance. In Figure 5.6b, the impact of increasing
the number of antennas at the FC on the detection performance is investigated
for both D-MIMO and C-MIMO detectors, considering sensor distribution in the
region [0.5R,R] at PFA = 0.1. The results demonstrate that the D-MIMO detector
exhibits improved performance as the total number of antennas NT increases.
This improvement is attributed to the allocation of more antennas to each FC
(Nd increases as NT increases). The performance is primarily influenced by the
distribution range of the sensors. Notably, the improvement is less significant for
C-MIMO, where sensors are distant from the FC located at the cell center, and
even an increase in the number of antennas does not contribute substantially to
the detection performance.

Considering signal to noise ratio (SNR) = 15 dB and M = 240, Figure 5.7a
demonstrates the ROC plots for the C-MIMO tests, determined in (5.11) and
(5.36), for perfect and imperfect CSI scenarios, respectively. Moreover, Figure 5.7b
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Figure 5.7 Theoretical and simulated performance is compared via ROC plots for
(a) C-MIMO detectors in (5.11) and (5.36), with SNR = 15 dB and M = 240; (b) D-MIMO
detectors in (5.19) and (5.41), for NT = 720 and SNR = 15 dB.

analyzes the performance of the D-MIMO detectors in (5.19) and (5.41), for perfect
and imperfect CSI scenarios, respectively, with SNR = 15 dB and NT = 720. It can
be concluded from both plots that the theoretical approximation of the likelihood
ratio test (LRT) aligns closely with the simulated plot, thus substantiating the
analytical results, even for the imperfect CSI scenario.

5.8 Conclusions

In this chapter, we investigated the hybrid combining-based low-complexity fusion
rules for unknown parameter detection in the next-generation WSNs employing
mmWave and massive MIMO technologies. The study explores scenarios with
both perfect and imperfect CSI, encompassing both centralized and distributed
antenna topologies. Simulation results demonstrated the superior performance
of the D-MIMO detector over the C-MIMO detector. This advantage is primarily
attributed to the proximity of the sensors to their respective FCs in the distributed
architecture. The readers are encouraged to read related works [Chawla et al.,
2018, 2021a,b–2022] to have a deeper understanding of the discussed topics.
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6.1 Introduction

Applying real-time wireless technologies in industrial control systems has been
gaining popularity in recent years. Pervasively deployed sensors and actuators
based on high-throughput wireless standards allow for increased network
throughput, improved system mobility, and reduced maintenance costs. A key
step of designing a wireless control system is to choose the most appropriate
wireless protocol based on its desired control specifications. Some protocols
based on low-data-rate physical layers (PHYs), like 802.15.4, focus on real-time
packet delivery and reliable performance but are only suitable for low-speed
control applications. Comparatively, IEEE 802.11 standard (WiFi) is designed for
high-speed wireless local area networks (WLANs) [Tramarin et al., 2019].

Table 6.1 gives an overview of the evolution of IEEE 802.11 standards, which
was first released in 1997 and designed for WLAN usage as part of the IEEE 802
family. After the first widely used version IEEE 802.11b (WiFi 1) in 1999, the
802.11 working group (WG) released the version of IEEE 802.11a (WiFi 2) and
IEEE 802.11g (WiFi 3) supporting orthogonal frequency division multiplexing
(OFDM). From IEEE 802.11n (WiFi 4), the single-user MIMO (SU-MIMO) is
supported with multiple optional beamforming transmissions. In IEEE 802.11ac
(WiFi 5), the multiuser MIMO (MU-MIMO) is added and the compressed channel
feedback is the only method for MU-MIMO beamforming. IEEE 802.11ax (WiFi 6)
supports orthogonal frequency-division multiple access (OFDMA), and the latest
IEEE 802.11be standard (WiFi 7) has a maximum data rate of 46 Gbps.

Notably, the nondeterministic communication performance of standard 802.11
makes it incapable of mission- and safety-critical applications that require high

Wireless Sensor Networks in Smart Environments: Enabling Digitalization from Fundamentals to Advanced
Solutions, First Edition. Edited by Domenico Ciuonzo and Pierluigi Salvo Rossi.
© 2025 The Institute of Electrical and Electronics Engineers, Inc. Published 2025 by John Wiley & Sons, Inc.
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Table 6.1 An overview of 802.11 standard evolution.

Protocol PHY name
Max.rate
(Mbit/s)

Channel
bandwidth (MHz)

Band
(GHz) Name

802.11 1997 DSSS 2 22 2.4 (Wi-Fi 1)
802.11b 1999 HR/DSSS 11 22 2.4 (Wi-Fi 2)
802.11a 1999 OFDM 54 20 5 —
802.11g 2003 ERP-OFDM 54 20 2.4 (Wi-Fi 3)
802.11n 2009 HT-MIMO 600 20/40 2.4/5 Wi-Fi 4
802.11ac 2013 VHT-MIMO 3466.8 20/40/80/160 5 Wi-Fi 5

802.11ax 2019 HE-OFDM 10,530 20/40@2.4GHz
20/40/80/160@5GHz

2.4/5 Wi-Fi 6

802.11be 2024 EHT-OFDM 46,120 20/40@2.4GHz
20/40/80/160@5GHz
80/160/320@6GHz

2.4/5/6 Wi-Fi 7

determinism and reliability. To address this issue, a systematic solution named
RT-WiFi [Wei et al., 2013; Leng et al., 2014; Wei et al., 2018] was proposed to
provide real-time data delivery for a range of wireless control systems. RT-WiFi
is a time division multiple access (TDMA)-based data link layer (DLL) protocol
built on IEEE 802.11 a/g PHY, providing deterministic timing guarantees for
packet delivery with a configurable sampling rate of up to 6 kHz. RT-WiFi was
implemented on AR9285, a commercial-off-the-shelf (COTS) 802.11 network
interface card (NIC). This allows running existing applications on top of RT-WiFi
with minimum modifications thus offering the advantage of much shortened
development periods; however, it comes with the trade-off of limited flexibility
in terms of radio technologies. For instance, the Atheros AR9285 is limited to
compatibility with IEEE 802.11a/g, whereas many real-time wireless protocols are
based on varied radio technologies and thus require different hardware platforms.
It is thus a significant challenge to develop a uniform communication platform
that integrates various real-time wireless technologies to maximize the existing
hardware investments and software development efforts.

These limitations motivate us to develop an software-defined radio (SDR)-based
configurable real-time wireless platform. This platform is programmable at both
PHY and DLL layers to meet the diverse requirements of industrial control
systems, including those with multiple operational modes. SRT-WiFi [Yun et al.,
2022] is a SDR-based solution for RT-WiFi to serve this purpose. Its design
and implementation leverage an advanced SDR platform (Xilinx Zynq-7000
and Analog Device AD9364), with radio functions programmed on an field

mailto:40@2.4GHz
mailto:40@2.4GHz
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programmable gate array (FPGA). SRT-WiFi can operate in hard real-time
because its radio functions are executed by logic blocks in the FPGA running
at oscillator-driven speeds, and thus support the essential functions needed for
high-speed real-time communications and provide an open-source platform to
accommodate the evolving IEEE 802.11 standards.

While SRT-WiFi provides real-time and reliable wireless communications for
industrial control applications, its current version only supports IEEE 802.11a/g
PHYs and SISO communications. Our ultimate goal is to develop SRT-WiFi into
a full-blown SDR-based real-time wireless platform and support newer standards
of WiFi, e.g. IEEE 802.11n/ac/ax, to enable both SU/MU MIMO and OFDMA. As
the first step toward this goal, we extend SRT-WiFi on GNU Radio, a widely used
open-source SDR platform [GNU Radio Foundation, 2007]. With GNU Radio and
USRP, we can implement and evaluate the PHYs of newer 802.11 standards with
a much shorter development period when compared to developing those PHYs
directly on FPGA-based SDR platform. For simplicity of presentation, we call this
GNU Radio-based implementation GR-WiFi to differentiate it from the SRT-WiFi
system developed on FPGA-based SDR platform. Once GR-WiFi is fully developed
and tested on GNU Radio, it will be ported on the FPGA-based SDR platform to
make it full-blown and support hard real-time performance. In GR-WiFi, we have
successfully implemented the PHYs of IEEE 802.11a/g/n/ac standards supporting
the Legacy, high-throughput (HT), and very-high-throughput (VHT) PHY formats
with SISO and 2 × 2 SU-MIMO and MU-MIMO. Both FPGA-based SRT-WiFi and
GNU Radio-based GR-WiFi implementations, once mature, will be made public
to the wireless communities to support a broad range of R&D activities. Table 6.2
summarizes the strengths and limitations of the three solutions reviewed in this
chapter.

Table 6.2 Pros and cons of the three solutions.

Pros Cons

RT-WiFi
[Wei et al., 2013]

● Timing guarantee on packet
delivery

● Flexible DLL configuration
● Seamless integration with

existing hardware

● Needs significant effort and
hardware expertise to manage
and upgrade COTS devices

SRT-WiFi
[Yun et al., 2022]

● Full-stack configurability
● Precise time synchronization

and real-time communication

● Complexity of implementation
and long developing period

● Only support IEEE 802.11a/g

GR-WiFi ● Efficient queue management
● Support multiple standards,

including IEEE 802.11a/g/n/ac

● Not able to perform on
real-time testbed yet
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6.2 RT-WiFi Based on IEEE 802.11a/g

An RT-WiFi network consists of three primary components: RT-WiFi stations
(STAs), which are devices equipped with 802.11-compatible hardware and
the RT-WiFi protocol stack; RT-WiFi Access Points (APs), which function as
intermediaries to support message exchange between the network manager and
RT-WiFi STAs; and the network manager, a software module that configures the
network, coordinates communication between APs and STAs, and adjusts the
communication schedule when necessary. An RT-WiFi AP and its associated
STAs are defined as a cluster. An RT-WiFi network with multiple APs is called a
multi-cluster RT-WiFi network [Leng et al., 2019] (see Figure 6.1). In industrial
practice, the placement of the RT-WiFi APs will be done through careful site
survey, resulting in each AP and its associated STAs forming a star topology.
In a multi-cluster RT-WiFi network, each AP is managed by an AP network
manager responsible for its cluster. Also, a central network manager supervises
all AP network managers and coordinates packet transmissions among different
clusters. Since RT-WiFi is a TDMA-based communication protocol, the local
clocks of all STAs and APs are synchronized [Wei et al., 2013].

6.2.1 RT-WiFi Protocol Design

The RT-WiFi protocol stack is the most essential building block of the RT-WiFi
network. It enables real-time and high-speed data transmissions and customiz-
able DLL configurations for diverse applications. The RT-WiFi protocol design
takes into consideration the requirements of different types of control applications,
enabling control designers to choose the communication behavior that fits their
applications the best. At the same time, RT-WiFi design minimizes the modifica-
tion of the original WiFi protocol so that it can be transparent to both the upper
layer software stack and underlying hardware to provide the most compatibility
and usability.

The architecture of RT-WiFi protocol is shown in Figure 6.2. At the very bottom,
RT-WiFi utilizes IEEE 802.11 PHY, which is sufficiently fast for most wireless
control systems. Control application users can easily implement the RT-WiFi
DLL on COTS IEEE 802.11 hardware to support high-speed and real-time data
transmissions. Above the IEEE 802.11 PHY layer is a TDMA-based DLL, which
is the core of the RT-WiFi protocol. Combined with the centralized channel and
time management schemes imposed by the RT-WiFi network manager, this DLL
ensures collision-free and deterministic communications. Additionally, it offers a
flexible abstraction for the upper layers, allowing seamless support for standard
UDP/TCP-based applications.
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Figure 6.1 Overview of an RT-WiFi network with three clusters.
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Figure 6.2 System architecture of the RT-WiFi protocol.

The RT-WiFi DLL comprises three main components: a timer that ensures
global synchronization across all RT-WiFi nodes and initiates timing events;
a link scheduler that manages media access and executes scheduled events at
designated time points; and a flexible channel access controller that dynamically
configures hardware parameters to execute timing events based on the target
application’s behavior.

6.2.2 Performance Evaluation

We set up a small-scale testbed with one AP and three STAs to evaluate the
performance of the RT-WiFi DLL design (see Figure 6.3). Each device utilized
the Atheros AR9285 NIC operating on the 802.11g protocol, though they were

AP: Intel i3 2320M 2.2 GHz

STA1
Intel i7 2620M

2.7 GHz

STA2
Intel Atom N450

1.66 GHz

STA3
Intel Celeron M

900 MHz

Figure 6.3 Testbed setup for
RT-WiFi performance evaluation.
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Table 6.3 Comparison of delay between RT-WiFi and regular WiFi networks.

Max delay (𝛍s) Mean delay (𝛍s) Standard deviation (𝛍s)

Link RT-WiFi Wi-Fi RT-WiFi Wi-Fi RT-WiFi Wi-Fi

STA1 → AP 3865 100,078 176 401 25.86 1491.69
STA2 → AP 4193 81,499 171 348 27.62 1000.60
STA3 → AP 3861 75,298 174 429 25.16 1221.72
AP → STA1 1197 78,089 184 788 16.86 2861.42
AP → STA2 1342 78,923 189 790 15.19 2806.56
AP → STA3 2186 77,860 189 799 19.03 2855.89

powered by CPUs with varying computing capabilities. In the experiments, six
pairs of UDP sockets were established between the STAs and the AP, with data
published every 4 ms for each socket with a fixed payload of 460 bytes. The
comparison results between WiFi and RT-WiFi are summarized in Table 6.3.
It shows that the average latency variation in a WiFi network is up to 90 times
greater than in an RT-WiFi network, with the maximum delay exceeding 30 times
that of RT-WiFi. In contrast, RT-WiFi supports a sampling rate of up to 6 kHz,
and less than 0.01% of packets have latency greater than 1 ms, meeting the
requirements of most industrial control systems [Wei et al., 2013].

6.3 SRT-WiFi Based on IEEE 802.11a/g

The RT-WiFi protocol design offers several advantages, including deterministic
timing guarantee on packet delivery, flexible data link layer configuration, and
seamless integration with existing hardware. However, it has some limitations,
such as limited flexibility in terms of radio technologies and no support for fre-
quently updated wireless protocols. To address these limitations, SRT-WiFi [Yun
et al., 2022] introduces an SDR-based configurable real-time solution. In contrast
to RT-WiFi, which relies on COTS hardware, the SDR platform offers programma-
bility at both the PHY and DLL levels. This flexibility allows it to accommodate
the needs of various industrial control systems with multiple operational modes.

SRT-WiFi is built upon Openwifi [Jiao et al., 2020], a SoftMAC IEEE 802.11
design compatible with the Linux MAC80211 subsystem. As shown in Figure 6.4,
the Openwifi system has two major components: the processing system (PS) and
the programmable logic (PL). The PS handles the majority of the MAC layer and
all higher layers. The PL is an FPGA-based embedded system responsible for the



Programmable logic (PL)
Radio

terminal
AD9364

AD9364
interface

ADC

DACDUC

DDC

OFDM
TX

OFDM
RX

XPU

TX interface

Queue 8

Queue 1Queue 0

RX interface

Queue

TDMA

CSMA

D
M

A
D

M
A

Processing system (PS)

Kernel space
OFDM TX driverMISC

TX driver

TDMA driver

XPU driver

RX driver

OFDM RX driver

AD9364 driver

M
A

C
8
0
2
1
1

d
ri

v
er

L
in

u
x

M
A

C
8
0
2
1
1

User space

Network
manager

Real-time
Task nReal-time

Task 3
Real-time

Task 2
Real-time

Task 1

A
X

I
B

u
s

Created modules Modified modules

Figure 6.4 Overview of the SRT-WiFi system architecture. It highlights the created and modified modules in SRT-WiFi based on the
Openwifi architecture.



6.3 SRT-WiFi Based on IEEE 802.11a/g 137

real-time portion of the MAC and PHY layers. Both PS and PL are implemented
on the Zynq-7000 SoC, which includes an FPGA for the PL and an ARM proces-
sor for the PS. Data exchange between PL and PS occurs through the Advanced
eXtensible Interface (AXI) bus, supporting direct memory access as well as reg-
ister reading and writing. Additionally, the PL is connected to an AD9364 radio
terminal from Analog Devices for signal transceiving.

Figure 6.4 shows three main modules of PL on the right side: the TX interface
(TXI), the XPU (application-specific processing unit), and the RX interface (RXI).
The TXI module manages packet transmission, while the RXI module handles
packet reception. The XPU module controls channel access by using IEEE 802.11
distributed coordination function (DCF) [IEEE 802.11 Working Group, 2021].
Leveraging concurrent processing ability in FPGA, the radio terminal can operate
its transmitter (TX) and receiver (RX) modules at the same time. Besides, PL
modules equipped with registers allow configurations of operation modes and
parameters.

In PS, a Linux OS is operating on an ARM processor. As the platform adopts
SoftMAC architecture, most MAC functionalities are integrated into the Linux
kernel (MAC80211 subsystem [Mur, 2011]), excluding the real-time MAC and
PHY that are being implemented in PL. Between the Linux MAC80211 subsystem
and the wireless adapter (PL), the MAC80211 driver is in place to facilitate
communication. Sub-drivers (depicted on the left side of Figure 6.4) ensure
data communications between the MAC80211 driver and PL. MAC80211 driver
interacts with PL by calling APIs provided by sub-drivers. Additionally, TX and
RX drivers manage the transmission and reception of data packets between the
PS and PL, respectively, using direct memory access (DMA).

Building on top of Openwifi, SRT-WiFi aims to achieve several key objectives:
enabling precise network-wide time synchronization and facilitating multi-cluster
real-time communications with effective rate adaptation at run time. The design
details of the modified PL and PS components of SRT-WiFi are presented below.

6.3.1 Programmable Logic (PL) in SRT-WiFi

The PL component of SRT-WiFi is designed to (i) achieve real-time transmissions
with high-precision time synchronization, (ii) enhance queue management
efficiency, and (iii) measure precise link reception SNR as a reference for rate
adaptation. We now describe how to achieve these functions in SRT-WiFi PL.

6.3.1.1 TDMA Block Design in SRT-WiFi PL
To improve real-time performance, a TDMA block is designed in XPU to supple-
ment the carrier sense multiple access (CSMA) block. SRT-WiFi can seamlessly
switch between TDMA and CSMA modes during runtime.
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The TDMA mode in SRT-WiFi is designed to transmit and receive frames at
designated times, coordinating communication between APs and STAs to prevent
collisions. With this objective in mind, all transmissions follow a schedule that
includes the transmitting times of the links with a specified time duration called
superframe. A superframe consists of consecutive time slots, with each slot spec-
ifying the transmission state (TX, RX, or Idle) and the corresponding sender or
receiver. At run time, the superframe is continuously generated to schedule the
transmissions. Each time slot of the superframe has an atomic slot as the basic time
unit. The length of time slots varies along with the rate to support rate adaptation,
as a lower rate requires more time, namely more atomic slots, to transmit the same
packet. In SRT-WiFi, superframe lengths, time slots, and atomic slots are fully cus-
tomized. In most cases, application’s requirements decide superframe length and
selected data rate in the PHY link configure time slot and atomic slot lengths.

Figure 6.5 illustrates a superframe example in an SRT-WiFi network. The super-
frame has 127 atomic slots, with Slot0 and Slot1 allocated to AP1 and AP2 for
sending beacons. Shared slots shown in Slot2 and Slot3 are available for any links
that are used for the association process. The remaining atomic slots are either
used for specific link communications or left idle. In the example, each link has the
same maximum transmission unit (MTU) but operates at different rates, requiring
varied time slot lengths and different numbers of atomic slots to transmit.

In the TDMA block, a register page is implemented for the TDMA driver can
store and maintain schedule information. A scheduler timer located in the TDMA
block will trigger the transmissions based on schedule. Each time slot attached a
link assignment at the beginning will be retrieved by the TDMA block. The TXI
module, which has the queue ready for each link, will send a frame to the next
module as soon as it detects a loaded queue. The OFDM TX module then processes
the frame by modulating the bit stream into the digital signal stream and handing
it over to the digital-to-analog converter (DAC) interface for final signal emission
through the radio terminal’s antenna.

6.3.1.2 TDMA Time Synchronization Design
SRT-WiFi has an accurate time synchronization feature among the devices in the
network. The SRT-WiFi network contains multiple clusters with an AP and several
STAs, which may share the same channel. STAs and AP within a cluster running

S0 S1 S2 S3 S4 S5 S6 S7 S8 S9 S126

Beacon1
6 Mbps

Shared
6 Mbps

Shared
6 Mbps

Link1
54 Mbps

Link3
12 Mbps

Link2
36 Mbps

Idle
…

Beacon2
6 Mbps Schedule

Atomic slot

Superframe

Figure 6.5 The timing diagram of an example superframe in multi-cluster SRT-WiFi
with 127 time slots.
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at the same channel need to be synchronized to avoid potential collisions. To solve
this, a novel synchronization method is implemented at the PHY layer on the SDR
device. In the scenario that APs run on the same channel, one AP is selected as the
main AP (MAP), and the rest are the subordinate APs (SAPs). The setting assumes
that all SAPs can receive signals from the MAP, which serves as the provider of the
reference clock. The SAPs synchronize with the MAP, while all STAs synchronize
with their respective APs. For instance, as depicted in Figure 6.1, AP2 serves as the
MAP while AP1 and AP3 are SAPs synchronizing to AP2. This synchronization
mechanism prevents devices from relying on the timer in a non-real-time oper-
ating system, leveraging instead the timer in hard real-time PL. To achieve this,
a scheduler timer with nanosecond precision is added into the TDMA block to
trigger transmissions.

In the PL layer, OFDM RX module performs PHY demodulation, and demodu-
lated status and symbols are passed to RXI and XPU. In the TDMA block, a syn-
chronization function is added to synchronize time with a specific AP by utilizing
the demodulated result. The synchronization procedure has the following steps.

The synchronization function waits for the MAC packet header from the OFDM
RX module and checks the packet’s content. If it’s a beacon packet, the function
continually waits for the service set ID (SSID) in the following packet payload.
Upon reading the SSID, the synchronization function compares it against the tar-
get SSID provided by the TDMA driver through the registers. If two SSIDs match,
the buffered time is updated to the schedule timer; if not, the synchronization
function waits for the next packet, and the schedule timer continues to run as usual
without any update. Notably, this synchronization method is also compatible with
other protocol versions like IEEE 802.11n/ac/ax.

Using this synchronization mechanism, our experimental results demonstrate
that the synchronization time drift of the SRT-WiFi devices can be maintained
within 0.2 μs, which outperforms the COTS hardware. Figure 6.6 presents the
results of two experiments from Yun et al. 2022. In the first experiment, two SAPs,
AP2 and AP3, synchronize with a MAP AP1, and their synchronization time error
is measured, as shown in Figure 6.6a. The maximum error observed is 0.2 μs. In
the second experiment, AP2, acting as an SAP, synchronizes with the MAP AP1,
while an STA synchronizes with AP2. The maximal synchronization error of the
STA in multi-cluster SRT-WiFi networks is measured, which is within 1 μs, as
depicted in Figure 6.6b. This improvement in time synchronization accuracy can
help reduce guard time and support shorter time slot lengths, thereby improving
the sampling rates.

6.3.1.3 Queue Management
In SRT-WiFi, packets from the PS are pushed into queues before transmission.
Unlike COTS hardware-based RT-WiFi, where the queue number is fixed and
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Figure 6.6 Synchronization performance of APs and STAs in a multi-cluster SRT-WiFi
network. (a) Time synchronization error between SAPs and MAP and (b) time
synchronization error between STA and MAP via an intermediate SAP.

cannot be changed, SRT-WiFi provides greater flexibility in queue configuration.
For instance, AR9285 used in RT-WiFi [Wei et al., 2013] has only eight queues. In
SRT-WiFi real-time transmissions, each link has its own queue stack to guarantee
the desired timing and throughput performance. However, if the number of STAs
exceeds the number of available queues in the AP, packets from different links
need to share a queue, potentially causing timing violations.

Figure 6.7a shows a device with 10 links but has 8 available queues, causing
STA9 and STA10 to share a queue with others. When multiple packets from differ-
ent links enter the same queue, they may wait until the packet at the queue head
being sent, even if their assigned time slots in the superframe occur earlier. AP
will encounter this time violation issue when managing real-time transmissions
for multiple STAs.

In SRT-WiFi, the TDMA block initiates packet transmission. Queues can be
assigned to different links, and the packets from different links are put into the
corresponding queues, as shown in Figure 6.7b. The TDMA block’s schedule
determines which queue to trigger for each slot. This flexibility is a feature of
SDR-based systems, as the queues can be configured in software rather than
hard programmed, as in COTS hardware. Given sufficient FPGA resources, the
supported queues can be extended to accommodate any number.

To address the time violation issue when the available AP queues are less than
supported STAs, a dynamic buffer is designed in SRT-WiFi as shown in Figure 6.7c.
A dynamic buffer contains a series of slots, each of which stores one packet at most.
When a packet arrives, the TXI pushes it into an unused buffer slot. Next, based
on the schedule, the TDMA module checks the link information located at the
beginning of each time slot and scans the whole buffer to check if a packet for that
link is present. If it finds one, it triggers the transmission from the corresponding
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(a) Queue contention when 10 stations share only 8 queues, (b) assigned queues per link
using an SDR-based design, and (c) dynamic buffer design using single-packet slots.

buffer slot. Since each buffer slot holds only one packet, more buffer slots can be
implemented with the same FPGA resources.

Table 6.4 compares the performance of assigned and dynamic queue manage-
ment using 16 links and a variable number of queues. AP periodically generates
a packet that requires only one atomic slot for transmission for each link. In
assigned queue management, the packet is pushed into this pre-assigned and han-
dled according to the schedule. While in dynamic queue management, the packet
is pushed into an available queue when it arrives. All transmissions follow a ran-
domly generated schedule where the throughput of each link is guaranteed and

Table 6.4 Assigned and dynamic queue management maximum and average packet
delay (slot number) with 16 links.

Number of queues 8 10 12 14 16

Assigned maximum delay (slot) 2816 2358 1707 1125 82
Dynamic maximum delay (slot) 591 162 106 104 103
Assigned average delay (slot) 336 236 159 87 16
Dynamic average delay (slot) 271 42 16 16 16
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the length of superframe is fixed. During the scheduled transmission, packet delay
is recorded, and no packets are dropped due to delay. The results show that even
a small disparity between the number of queues and links in the assigned queue
management can lead to a significantly high maximum and average delay. On the
other hand, the dynamic queue management method can manage more links with
the same number of queues and maintain a lower max. and avg. packet delays.
However, it does not completely eliminate delays since all queues are shared.

6.3.1.4 Link Quality Measurement
The rate adaptation function in SRT-WiFi requires precise SNR measurement.
There are two practical methods developed to meet the SNR requirement. Both
methods leverage the long training field (LTF) in the Legacy physical layer proto-
col data unit (PPDU) preamble of the 802.11 PHY signal. The first method involves
calculating the autocorrelation [Lee and Messerschmitt, 2012] of the LTF. The LTF
contains a half symbol followed by two repeated symbols, which correspond to 160
samples at a 20 MHz sampling rate. So, the LTF shows the same pattern in every
64 samples [IEEE 802.11 Working Group, 2021]. We utilize 128 consecutive sam-
ples of the LTF to calculate the autocorrelation, denoted as 𝜌, and the SNR value
(in dB) can then be determined as follows:

SNR = 10 log10

(
𝜌

1 − 𝜌

)
, (6.1)

where we assume that 𝜌 < 1. Two 64 repeated samples are used, but not the first
32 samples because of transient effects that can occur at the start of a transmission
in the sender’s hardware.

In the second method, the LTF and a piece of background noise before the data
symbol are buffered after the packet arrival. The power of the background noise
can be measured before packet arrival, and the power of LTF signal includes noise
power plus the signal power. Then, the SNR (dB) is computed in this way:

SNR = 10 log10

(PLTF − Pnoise

Pnoise

)
, (6.2)

where PLTF is the signal power of LTF and Pnoise is the power of the background
noise before the packet. We assume that PLTF is larger than Pnoise.

Both SNR measurement methods are integrated into the OFDM RX module of
SRT-WiFi. An SNR value is calculated each time a packet is received. If the received
packet contains a source address, the computed SNR value is stored along with
the source address. The MAC80211 driver forwards the SNR information to the
TDMA driver, who manages the scheduling in the system and utilizes the SNR data
for scheduling decisions. The device manager on each device interacts with the
TDMA driver to access the SNR information and forwards the SNR information
to the central network manager. The central network manager uses this SNR data
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to determine the appropriate data rate for each link based on the quality of the
wireless connections and creates the network schedule

6.3.2 Processing System (PS) in SRT-WiFi

The two main components of the PS design in SRT-WiFi are the drivers and the
network manager. The drivers act as the interface between the PL and Linux (see
Figure 6.4), serving two primary functions: (i) configuring parameters in the PL
modules to support various working modes and functions and (ii) managing the
packet exchange between the PL and the OS. Each PL module has a corresponding
driver connected to the kernel because each PL module contains a register page
used to set or read status. For example, TXI uses a register to determine if a packet
requires an ACK and another register to report the packet delivery status. On the
kernel side, sub-drivers handle configuration tasks within the PL component and
interact with the OS by encapsulating read and write functions into APIs for the
MAC80211 driver. The TDMA block in the XPU also has a register page containing
three parts. The first part is for schedule allocation, including superframe and
atomic slot length. The second part is used for PL synchronization by acquiring
AP’SSID for stations to synchronize with. The third part is a mode switch for
toggling between defaulted CSMA and customized TDMA modes. Since the
TDMA mode’s functions are incompatible with the MAC80211 subsystem,
configuring the TDMA block through MAC80211 is challenging. Therefore,
the TDMA driver is implemented as a miscellaneous character driver (MISC),
providing basic read/write functions for user space. In user space, the network
manager configures the TDMA block by calling the APIs of the TDMA driver so
that it can adjust the schedule, set parameters, and switch modes as needed.

In SRT-WiFi, there are three types of network managers forming a hierarchical
structure: the central network manager (CNM) managing all network resources,
cluster managers (CM) operating on the APs, and device managers (DM) operating
on the STAs. During the process of joining an SRT-WiFi network, the CNM starts
first, awaiting TCP connections from CMs to distribute schedules to the links.
Following this, CMs initiate the cluster networks, with slave APs synchronizing
with the master AP on the same channel, and then await STA connections. To sim-
plify the synchronization and the joining process, beacon and shared slots remain
fixed throughout system operation, and this information is broadcasted among
all devices. Once an STA powers on, it scans the channels, synchronizes with the
designated AP, and joins the network. Once the network is joined, the DM on the
STA establishes a TCP connection with the CM on the AP to receive and update
the schedule. Until the schedule is received, the STA uses shared slots to complete
the joining process. Unlike assigned slots, shared slots are contention based,
where each sender first undergoes a random backoff, similar to CSMA mode, and
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then senses the channel. During operation, DMs and CMs on each device monitor
link qualities and interference. This channel information is collected by the CNM,
which then determines and updates schedules and data rates for the DMs and
CMs to adapt to current channel conditions, ensuring stable transmissions.

A unique aspect of SRT-WiFi network management is its capability to dynam-
ically adjust slot lengths within the schedule to support rate adaptation during
real-time transmission. While the MTU for an individual link remains fixed, the
data rate may vary depending on interference levels. A lower data rate requires
more time to transmit a packet of the same length, which can exceed the time
slot boundary and lead to collisions. SRT-WiFi addresses this issue with dynamic
slot lengths. In the schedule, an atomic slot (AS) is defined as the shortest slot
length that can support transmitting an MTU-sized packet at the highest rate.
When transmitting at a lower rate, a packet can use multiple consecutive atomic
slots without preemption. Therefore, by selecting different rates during runtime,
the packet transmission can occupy varying atomic slots.

6.3.3 Performance Evaluation

A testbed of multi-cluster SRT-WiFi is implemented to perform a comprehensive
evaluation. This network configuration setting includes two APs, AP1 and AP2
for Cluster1 and Cluster2, operating on a single channel, with each AP having
two STAs connected, STA1 and STA2 in Cluster1, STA3 and STA4 in Cluster2.
Figure 6.8 provides a testbed overview with a total of four links. CNM and APs
are connected to a router in the testbed, forming a backbone network, and sta-
tions connect to their APs accordingly. Also, a USRP device is employed to create
interference via an antenna positioned near AP2.

Due to the page limit, this chapter presents a single experiment to showcase the
rate adaptation function in SRT-WiFi. In this experiment, interference is intro-
duced to the testbed. Each device measures its reception SNR and reports it to the
CNM. The CNM then constructs the schedule and selects appropriate data rate.

STA3STA1
STA2

CNM

STA4

AP2AP1
Router
USRP

Figure 6.8 An overview of the multi-cluster SRT-WiFi testbeds. Source: Yun et al.
[2022]/IEEE.
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In the experiment, we add the interference on the AP side and let the station both
send UDP packets to the AP and measure the packet delivery ratio (PDR) and SNR.
The level of interference is not fixed but varied every 0.5 seconds, meaning that in
the first half of each second, the interference rises to a set level while in the next
half of that second, the interference shuts down so that the interference varies fast.

Figure 6.9b shows the measured SNR of the channel and Figure 6.9a provides
a closer look at a portion of the measured SNR to illustrate the interference vari-
ations. The SNR values decrease from 27 to 12 dB and rise gradually. Figure 6.9c
presents the data rates for both SRT-WiFi and standard WiFi, the latter of which
uses the Minstrel algorithm [Xia et al., 2013] for rate adaptation based on trans-
mission history. The corresponding PDR is shown in Figure 6.9d. The experiment
result reveals that standard WiFi cannot maintain stable transmissions when
the SNR value falls below 20 dB. In contrast, SRT-WiFi employing a rate adap-
tation method can provide stable transmissions under different SNR conditions.
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The CNM buffers the measured SNR values over a time window and adjusts
the data rate based on the lowest SNR value in the buffer; once a lower SNR is
detected, the data rate is immediately reduced and does not increase until all
buffered SNR values exceed the threshold for a higher rate. This method wastes
some resources when the channel condition is good, but it ensures stable trans-
missions. The performance of rate adaptation in SRT-WiFi under interference is
shown in Figure 6.9c, characterized by a stepped pattern without rapid changes.
Figure 6.9d illustrates the PDR of SRT-WiFi during the test, demonstrating stable
performance thanks to the rate adaptation mechanism.

6.4 GR-WiFi Based on 802.11a/g/n/ac

SRT-WiFi currently provides real-time, reliable wireless communication for
industrial control applications but is limited to IEEE 802.11a/g PHYs and SISO
communications. Our long-term goal is to enhance SRT-WiFi to support newer
WiFi standards such as IEEE 802.11n/ac/ax. As the first step toward this goal,
we extend SRT-WiFi on GNU Radio, a popular open-source SDR platform, and
introduced GR-WiFi, a GNU Radio-based open-source platform for IEEE 802.11
research. Note that there is already a GNU Radio implementation for IEEE
802.11/a/g/p available as referenced in Bloessl et al. [2013]. In this work, we
implement PHYs of 802.11a/g/n/ac standards on GR-WiFi, which can support
the Legacy, high-throughput (HT) and very-high-throughput (VHT) PHY formats
with SISO and up to 2 × 2 SU-MIMO and MU-MIMO. Figure 6.7 summarizes
the three supported PHY formats (Legacy, HT and VHT) in GR-WiFi and detail
reference can be found at IEEE 802.11 standards [IEEE 802.11 Working Group,
2021]. In Section 6.4, we present the design of the packet transmission and
reception functions in GR-WiFi (Sections 6.4.1 and 6.4.2), followed by the imple-
mentation and evaluation details, including key blocks and performance analysis
(Sections 6.4.3.1 and 6.4.3.2).

6.4.1 Packet Transmission Design

The packet transmission function in GR-WiFi follows these steps to generate the
packets of different supported formats in 802.11a/g/n/ac standards.

In Legacy format, beginning with the preparation of training field, trans-
mitter converts the given orthogonal frequency division multiplexing (OFDM)
training symbol from frequency to time domain waveform by applying inverse
fast Fourier transform (IFFT), scales the waveform amplitude with a tone
scaling factor, and inserts the guard interval (GI). In the Legacy signal field,
24-bit Legacy signal bits, which contain information on packet length and
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modulation and coding scheme (MCS), go through binary convolutional coding
(BCC) and interleave process. The interleaved bits are then modulated with binary
phase shift keying (BPSK) and converted to a scaled time domain waveform. The
data payload that is distributed into data symbols will go through the same steps
as Legacy signal symbols but with an additional bit of scrambling before the BCC.

The HT format’s packet transmission is more complex due to the MIMO and
beamforming support. First, the signal is generated for multiple spatial streams
(SSs) for MIMO transmissions. Each SS has the same packet format as shown in
Figure 6.10. Before each SS is modulated and emitted into the air through anten-
nas, a cyclic shift is applied to each SS to prevent constructive interference and
unintentional beamforming, which happen when the same signal is transmitted
through different transmit chains. After applying cyclic shift, the modulation and
scaling steps are the same as the Legacy packet. The Legacy signal field in HT
packet has the rate set to lowest, and the length is computed to cover the duration
of the following HT portion transmission. The HT signal field is the same as
Legacy signal field but occupies two symbols. The HT portion starts from the HT
training field. Besides the cyclic shift, there is also the spatial mapping for each
subcarrier to apply the required phase for beamforming, called the Q matrix in
the standard. HT-STF and each of the HT-LTFs have one symbol. The number
of the HT-LTFs is determined by the SS number to provide sufficient channel
information for the receiver to estimate the channel(s). In HT data symbols,
after coding, stream parsing is performed to separate the coded bits into multiple
spatial streams. Interleave is also applied for each spatial stream but with different
phase rotations as specified in the standard. Cyclic shift, waveform scaling, and
GI insertion are necessary steps before the packet is ready to be transmitted
through the air. The signal generation for the VHT format is similar to HT’s, but
it supports 256 QAM, up to eight spatial streams, and a 160 MHz bandwidth.

6.4.2 Packet Reception Design

To design the packet reception in GR-WiFi, we begin by addressing the packet
reception trigger. As shown in Figure 6.10 from sample 10 to 170, the STF has
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10 repeated symbols last for 0.8 μs with 16 samples. We utilize an autocorrelation
method that leverages the 10 times repetition of the STF symbol. This approach is
robust against multipath propagation effects carrier frequency offset (CFO) distor-
tion during the reception. The autocorrelation output forms a plateau. Once the
output passes the threshold, we measure the length of the continuous plateau to
detect the STF and initiate the reception process.

Once packet reception is triggered, the next steps involve packet synchronization
and fine-tune the timing. To fine-tune the timing, we find the maximum autocor-
relation within a specified time window and locate two shoulder indices at 80%
of the maximum value on both the left and right sides. As illustrated in Figure 6.10,
the long training field (LTF) repeats 2.5 times. The correlation reaches its peak
at the start of the LTF Guard Interval 2 (GI2) and drops at the end of the LTF GI2,
making the center of this correlation correspond to the middle of LTF GI2.

With the correct timing, we estimate channel and CFO. The CFO of the fol-
lowing samples will be compensated. For each data symbol, it will be converted
to frequency domain and then be equalized with channel. The recovered data
symbols are demodulated using quadrature amplitude modulation (QAM) con-
stellations and then decoded. Currently, the proposed receiver only supports the
binary convolutional coding (BCC) with a soft-input Viterbi decoder.

6.4.3 Implementation and Evaluation

We now present the implementation details of GR-WiFi on the GNU Radio. As
shown in Figure 6.11, we implement both SISO and 2 × 2 MIMO receivers. The
2 × 2 MIMO can also handle SISO packet reception. However, we design a sepa-
rate SISO block because each port in this block processes samples in parallel. Using
an MIMO receiver to decode SISO input will keep the second port running with-
out processing any samples. For the transmission, the transmitter only generates
packet samples, so the waste is negligible.

6.4.3.1 Key Blocks in GR-WiFi Implementation
The GR-WiFi implementation on GNU Radio includes the following key blocks:

Preprocessing: The preprocessing block is a hierarchical block to compute the
autocorrelation of the input samples. The values obtained during the autocor-
relation computation are reused to compute the coarse CFO. The average blocks
use a sliding window with a maximum length to prevent repeated computations
of samples and avoid the accumulation of floating-point errors.

Trigger: The trigger block takes the continuous autocorrelation samples as the
input and detects the plateau of autocorrelation. Once the plateau length
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meets a threshold, it generates output flag to trigger the synchronization block.
The trigger block also has a state machine to avoid multiple triggers for one
packet to avoid wasting computation resources.

Synchronization: The synchronization block is triggered to use autocorrelation
of LTF and identify the start of LTF, with the index being passed to the next
block. At the same time, the synchronization block compensates the coarse CFO
from the preprocessing block for the LTF samples, re-estimates the CFO with
two LTF symbols, and computes the accurate CFO value. This accurate CFO
value is passed tp the next block using a tag.

Signal: The signal block is triggered by the synchronization block to get the
timing of the packet and the estimated CFO. It first compensates the CFO
for LTF and Legacy Signal to estimate the Legacy channel and demodulate
and decode the Legacy Signal. If the Legacy Signal is correctly decoded, this
packet is identified as at least a Legacy packet with the maximum possible
timing length corresponding to the Legacy length. The signal block computes
the symbol and sample number according to the MCS and packet length. The
following input samples within the sample number will be compensated with
CFO and passed to the next block. That means the signal block chops the input
sample stream and only keeps useful packet samples for further processing.
For MIMO receivers, the Signal2 block is used, with the primary difference
being that Signal2 also chops samples from the second sample stream to match
the length of the first stream and compensates for the CFO of the second
stream.

Demodulation: The demodulation block converts the OFDM symbols to QAM
constellations and disassembles them into soft bits. A state machine is used
to determine packet format. It first updates the Legacy channel and checks
whether legacy MCS is the lowest. The lowest MCS leads to further demodula-
tion and decodes on the following two symbols to check the HT Signal and VHT
Signal A, which will decide the following demodulation. If the Non-Legacy
checking fails, the packet is demodulated as Legacy. If it is either HT or VHT,
the channel is re-estimated, and packet is then demodulated accordingly. For
the OFDM part, the channel is compensated after fast Fourier transform (FFT),
and pilots are used to correct the residual CFO. The QAM constellations are
disassembled into soft bits and deinterleaved. Some steps are simplified to
speed up the processing, such as deinterleaving using a predefined lookup
table for each symbol but not following the method given in the standards. The
demodulation block outputs the soft bits to the next decoding block.

The difference between the demodulation block and demodulation-2 block
lies in their design purposes and functionalities. The demodulation block is
intended for SISO and MU-MIMO receivers. It can perform channel sounding
and receive MU-MIMO packets with group number and position in the group to
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estimate the corresponding channel and demodulate accordingly. On the other
hand, the demodulation-2 block is designed for the AP side in MU-MIMO,
which can handle two stream inputs simultaneously. To simplify processing,
channel sounding function is removed. However, we are considering adding
full functionality to all blocks in future developments.

Decoding: The decoding block processes a bit stream input and outputs a message
stream, which is the required input type for the socket PDU block. It takes the
input soft bits with a specified trellis length, decodes the packet, and checks the
cyclic redundancy check 32 (CRC32). The Viterbi decoder performs a forward
update for the whole packet and then traces back from the very end, which is
the 6-bit-zero tail. This approach is used because GNU Radio accumulates some
samples and then provides them to the blocks so that the proposed receiver does
not aim for real-time performance in the communication stack. If the packet is
correct, decoding block passes the packet to the Python MAC layer through a
UDP message for further customized processing. In case of a null data packet
(NDP) used for channel sounding that has no bits to decode, the decoder sim-
ply packages the channel information into a UDP message and sends it to the
MAC layer.

6.4.3.2 Performance Evaluation
We now present the performance evaluation of GR-WiFi through simulations and
real-world testbed experiments.

We generate simulation signal samples and have the receiver demodulate. The
receiver successfully receives the packet under low SNR conditions, indicating
its enhanced performance in handling lower-quality signals. A higher SNR value
means a better wireless link that can support higher MCS, leading to higher data
rates. Figure 6.12 presents the packet delivery ratio (PDR) of GR-WiFi for three
different format packets under different SNR conditions with different MCS. The
figure reveals that a VHT format may require a higher SNR than the other two
formats to achieve the same PDR. Figure 6.13 presents the PDR of GR-WiFi VHT
and HT for SU-MIMO transmissions. With the additive white Gaussian noise
(AWGN) channel simulation, the performance is similar to SISO. However, the
performance drops in real-world multipath propagation conditions.

Figure 6.14 shows our MU-MIMO testbed, which aims to demonstrate the
simultaneous transmissions between AP and two stations. Equipment deployed
for the testbed includes one USRP B210 with 2 × 2 TRX antenna array and two
USRP B200 with 1 × 1 TRX antennas. One complete transmission involves the
following steps: the AP first broadcasts NDP packets to have all stations’ attention.
Stations receive and capture the two LTFs in the NDP packets. Each station sends
its two received LTFs back to AP. AP gathers all the LTFs information from sta-
tions and calculates the steering matrix accordingly. Based on the steering matrix,
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Figure 6.14 GR-WiFi MU-MIMO testbed with 1 AP (laptop) and two STAs (desktops)
where real channel response is shown at the AP side.

AP can then transmit packets biased in a particular direction based on where
the station is. In our testbed, we demonstrate the successful reception in both
stations.

The current implementation of GR-WiFi has certain limitations, primarily due
to its inability to fully connect to a real-world WiFi network. This is because the
receiver cannot return the acknowledgment (ACK) to the sender within the des-
ignated ACK timeout period. Nonetheless, it can operate as a passive receiver to
intercept packets transmitted over the air. Despite its limitations, GR-WiFi is a cru-
cial step in exploring new protocols, and its successful deployment on GNU Radio
offers a valuable reference for future implementations on SRT-WiFi.

6.5 Conclusion and Future Work

In this chapter, we review three different WiFi implementations for supporting
high-speed and real-time industrial control applications. The RT-WiFi solution
is based on COTS hardware. SRT-WiFi is implemented on an advanced SDR
platform where the radio functions are programmed on FPGA to support hard
real-time performance. GR-WiFi is implemented on GNU Radio-based SDR
platform, supporting a much shorter development period. Extensive experiments
have been conducted on both SRT-WiFi and GR-WiFi for functional validation
and performance evaluation.

As future work, we will port the implementations of 802.11n/ac PHYs from
GR-WiFi to SRT-WiFi to make it full-blown and support hard real-time per-
formance. We will add newer standards to SRT-WiFi, such as IEEE 802.11ax.



154 6 Software-Defined Radio (SDR)-Based Real-Time WLANs for Industrial Wireless Sensing and Control

Both FPGA-based SRT-WiFi and GNU Radio-based GR-WiFi implementations,
once mature, will be made public to the wireless communities to support a broad
range of research and development (R&D) activities.
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7.1 Introduction

Multi-agent networks such as Internet of Things (IoT) and networked
cyber-physical systems (CPS) are vital in Industry 4.0 and smart infrastruc-
ture and used in applications such as structural health monitoring, climate
monitoring, smart cities, and digital twins [Kim and Kumar, 2012; Da Xu et al.,
2014; Yu and Xue, 2016; Xu et al., 2018]. These networks comprise agents such
as sensors, actuators, and controllers distributed over a wide area to monitor
and control physical phenomena by collecting data from agents for learning and
decision-making. To that end, multi-agent systems rely on distributed signal pro-
cessing and learning algorithms where the network agents exchange information
with their neighbors. This enables agents to cooperatively perform tasks such
as event detection, tracking, and parameter estimation. One such framework is
Kalman filters, which have found wide applications in positioning [Feng et al.,
2020], smart grids [Yang et al., 2013], localization [Rezaei and Sengupta, 2007],
target tracking [Liggins et al., 1997], and dead reckoning [Brossard et al., 2020].

However, the limited computational and energy resources available to agents,
coupled with the decentralized nature of networks, make distributed Kalman
filters susceptible to cybersecurity threats and malicious attacks from adversaries
[Humayed et al., 2017; Wolf and Serpanos, 2018]. Attacks on multi-agent networks
can be divided into active and passive. Specifically, passive attacks involve an
adversary eavesdropping on communications between agents to gather informa-
tion [Kapetanovic et al., 2015], whereas active attacks, such as denial-of-service
(DoS) and integrity attacks, aim to disrupt the normal functioning of the network.

Wireless Sensor Networks in Smart Environments: Enabling Digitalization from Fundamentals to Advanced
Solutions, First Edition. Edited by Domenico Ciuonzo and Pierluigi Salvo Rossi.
© 2025 The Institute of Electrical and Electronics Engineers, Inc. Published 2025 by John Wiley & Sons, Inc.
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During a DoS attack, communication between agents is hindered due to jam-
ming [Chang, 2002], while integrity attacks involve adversaries or malicious
agents injecting false information into the network [Vempaty et al., 2013]. In
data-falsification attacks, an adversary might modify the data stream of an agent
or gain control of multiple agents to degrade the overall system performance.
In these situations, the primary challenges for distributed algorithms include
verifying the trustworthiness of local information and ensuring robust inference
to achieve system objectives despite the presence of adversaries.

Distributed algorithms rely on agents sharing their local information with
adjacent (i.e. neighboring) agents, which can potentially compromise privacy.
While exchanging information fosters collaboration among network agents, it
also raises concerns about privacy due to the risk of exposing private data to
adversaries. For example, in the context of smart grids, multiple generators need
to reach a consensus on costs without disclosing their individual data [Yang
et al., 2013]. The multi-agent rendezvous problem involves agents agreeing on a
meeting location without revealing their initial positions [Lin et al., 2007].

In this chapter, we explore distributed Kalman filtering (DKF) algorithms
and address the following questions: (i) How can we ensure robustness against
data-falsification attacks without significantly degrading performance? (ii) How
can we enhance privacy for agents and improve the overall privacy-accuracy
tradeoff for all agents without imposing a high computational load? The rest
of the chapter is organized as follows. In Section 7.2, we provide an overview
of a generic distributed Kalman filter. We present the data-falsification attack
and Byzantine-robust Kalman filter model in Section 7.3. Section 7.4 focuses on
privacy and privacy-preserving Kalman filters.

Mathematical Notations: Scalars, vectors, and matrices are represented by
lowercase, bold lowercase, and bold uppercase letters, whereas Im, 𝟎m, and 𝟏m
denote an m × m identity matrix, an m × m zero matrix, and a column vector of
ones with m elements. The transpose, inverse, and expectation operators are rep-
resented by (⋅)T , (⋅)−1, and 𝔼{⋅}. The trace operator is tr(⋅), and Blockdiag({Ai}N

i=1)
denotes a block diagonal matrix with Ais on the main diagonal. The Kronecker
product and Hadamard product of two matrices are represented by ⊗ and ⊙,
respectively, whereas diag(a) denotes a diagonal matrix with elements of vector
a on the diagonal. The notation x(k) ∼  (𝟎,𝚺) indicates that x(k) is a white
Gaussian sequence with covariance 𝚺, and † represents the Moore–Penrose
pseudoinverse. The greater than and less than symbols in the scalar inequali-
ties are represented by > and <, respectively, while A ≽ 0 indicates a positive
semidefinite matrix and A ≽ B implies A − B is positive semidefinite. The
(i, j)th element of matrix A is [A]ij, and  ⊆  indicates set  is a subset of .
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Element-wise inequality is denoted by A ≤ B. The maximum and minimum
eigenvalues of square matrix A are 𝜆max(A) and 𝜆min(A). Operator vec(A) converts
matrix A to a column vector and vec−1(⋅) is its inverse. Half vectorization of
a symmetric matrix M ∈ ℝm×m is represented by vech(M) ∈ ℝm(m+1)∕2, where
vech(M) = [M1,1,… ,M1,m,M2,2,… ,M2,m,… ,Mm,m]T with Mij as the (i, j)th ele-
ment of M, and vec−1

h (⋅) is its inverse.

7.2 Distributed Kalman Filter

We examine a network of N that observes a dynamic process, which is modeled
by a linear time-varying state equation

xn+1 = Axn + wn, n = 1, 2 … , (7.1)

where, for time instant n, xn ∈ ℝm is the state vector, A ∈ ℝm×m is the
state-transition matrix, and wn is the process noise. At time n, agent i observes
yi,n ∈ ℝq given by

yi,n = Hixn + vi,n, (7.2)

where Hi ∈ ℝq×m and vi,n ∈ ℝq are the observation matrix and observation noise,
respectively. The state and observation noises, wn and vi,n, are independent
Gaussian processes with zero mean and covariances Q ∈ ℝm×m and Ri ∈ ℝq×q,
respectively.

The agents form an interconnected network modeled as an undirected graph
( , ). Here, the set  includes all agents, totaling | | = N, while the edge set
 represents agents that can communicate with each other. The open neighbor
set i of agent i, with cardinality |i|, includes all its adjacent neighbors. The
network adjacency matrix, E, has eij = 1 whenever nodes i and j are adjacent, and
eij = 0 otherwise. Finally, the degree matrix D≜diag({|i|}N

i=1) contains the node
degrees on its main diagonal.

In this setup, agents aim to collaboratively estimate the system state through
information exchange with their adjacent agents without coordination from a
central entity. To that end, let yn = [yT

1,n, y
T
2,n,… , yT

N,n]
T denote the collection of

observations from all the agents at time n, the augmented observation matrix be
defined as H = [HT

1 ,H
T
2 ,… ,HT

N ]T and the network-wide observation noise vn =
[vT

1,n, v
T
2,n,… , vT

N,n]
T with covariance matrix defined as R = Blockdiag

({
Ri

}N
i=1

)
.

Let x̂n|n−1 and x̂n|n denote the a priori and a posteriori estimates of xn, respectively,
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of the state vector defined in (7.1). Then the Kalman filter in the information
form [Olfati-Saber, 2005; Talebi and Werner, 2019], can be written as

x̂n|n−1 = Ax̂n−1|n−1

Pn|n−1 = APn−1|n−1AT + Q

P−1
n|n = P−1

n|n−1 + HTR−1H

x̂n|n = x̂n|n−1 + Pn|nHTR−1 (yn − Hx̂n|n−1
)
,

(7.3)

where Pn|n−1 and Pn−1|n−1 are the a priori and a posteriori error covariances,
respectively. Let us assume that the above computations are performed at every
node. At agent i, the local copy of a priori and a posteriori state estimates are
denoted x̂i,n|n−1 and x̂i,n|n, respectively, whereas the a priori and a posteriori error
covariances are represented by Pi,n|n−1 and Pi,n−1|n−1, respectively. The local copy
of state estimates and covariance matrices at agent i can be written as

x̂i,n|n−1 = Ax̂i,n−1|n−1

Pi,n|n−1 = APi,n−1|n−1AT + Q.
(7.4)

Substituting the augmented observation matrix H and observation noise covari-
ance matrix R in (7.3), the local error covariance can be rewritten as

P−1
i,n|n = P−1

n|n = P−1
i,n|n−1 +

N∑
j=1

HT
j R−1

j Hj =
1
N

N∑
j=1

𝚪j,n, (7.5)

where the local intermediate covariance information 𝚪i,n at agent i and time n is
defined as

𝚪i,n = P−1
i,n|n−1 + NHT

i R−1
i Hi. (7.6)

Similarly, at agent i, the local copy x̂i,n|n of state estimate given in (7.3) can be
rewritten as

x̂i,n|n = x̂i,n|n−1 +
N∑

i=1
Pi,n|nHT

i R−1
i

(
yi,n − Hix̂i,n|n−1

)
= 1

N

N∑
i=1

ri,n, (7.7)

where

ri,n = x̂i,n|n−1 + NPi,n|nHT
i R−1

i
(
yi,n − Hix̂i,n|n−1

)
. (7.8)

From (7.5) and (7.7), it can be seen that the Kalman filter in (7.3) reduces to com-
puting the network-wide average of quantities 𝚪i,n and ri,n at each agent. These
averages can be computed in a distributed manner via peer-to-peer communica-
tion by employing some average consensus algorithm.

Consider an iterative average consensus algorithm given by

𝚯i,n(k) = 𝚯i,n(k − 1) +
∑
j∈i

𝑤i,j
(
𝚯j,n(k − 1) −𝚯i,n(k − 1)

)
, k = 1, 2,… , (7.9)
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Algorithm 7.1 Distributed Kalman Filtering algorithm
For each agent i ∈ 

Initialize: 𝐱̂i,0|0 and 𝐏i,0|0
𝐱̂i,n|n−1 = 𝐀𝐱̂i,n−1|n−1
𝐏i,n|n−1 = 𝐀𝐏i,n−1|n−1𝐀T +𝐐
𝚪i,n = 𝐏−1

i,n|n−1 + N𝐇T
i 𝐑

−1
i 𝐇i

𝐏−1
i,n|n ←− Avg. Consensus ←− {𝚪j,n, ∀j ∈ i ∪ i}

ri,n = 𝐱̂i,n|n−1 + N𝐏i,n|n𝐇T
i 𝐑

−1
i

(
𝐲i,n −𝐇i𝐱̂i,n|n−1

)
𝐱̂i,n|n ←− Avg. Consensus ←− {rj,n, ∀j ∈ i ∪ i}

with the initial conditions 𝚯j,n(0), j = 1,… ,N. If the weights 𝑤i,j are chosen such
that the matrix W with elements [W]i,j = 𝑤i,j is doubly stochastic, then at every
agent we have

lim
k→∞

𝚯i,n(k) =
1
N

N∑
j=1

𝚯j,n(0), i = 1, 2,… ,N.

At every time instant n, we can set 𝚯i,n(0) = 𝚪i,n to obtain (7.5) or set 𝚯i,n(0) =
ri,n to obtain (7.7) and then employing the average consensus algorithm, the agents
can estimate the state in a distributed manner. In the remainder of this chapter,
we illustrate the average consensus algorithm using the below diagram:

𝚯i,n(k) ← Avg. Consensus ←{𝚯j,n(0), ∀j ∈ i ∪ i}, (7.10)

where, for agent i and instant n, 𝚯j,n(0), j ∈ i ∪ i serves as the input to the
average consensus algorithm, while 𝚯i,n(k) is the resulting output given by (7.9).
We can now summarize the steps involved in the distributed Kalman filtering as
Algorithm 7.1.

It can be observed in the above discussion that agents share local information
with their immediate neighbors. Therefore, the efficacy of the algorithm depends
on agents following Algorithm 7.1 faithfully. In a scenario where the agents
are compromised, and the information exchanged by the compromised nodes
is unreliable, the performance of the filtering algorithm is adversely affected.
Further, in many applications, agents possess local data that contain sensitive
information requiring privacy protection. Adversaries can deduce the local state
or correlated information of other agents by analyzing the data received from
neighboring agents. Therefore, in this chapter, we examine distributed Kalman
filtering algorithms considering two types of adversaries within the network:

● A Byzantine agent that injects false information into the estimation process to
impair the overall network performance.
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● An honest-but-curious agent that contributes faithfully to the estimation task
but is interested in inferring private information of other agents from messages
received from its neighbors.

7.3 Security in Distributed Kalman Filter

Consider a subset of Byzantine agents, denoted as  ⊂ . Unlike regular agents,
these Byzantine agents share falsified information with neighbors, aiming to
degrade network-wide performance [Vempaty et al., 2013], as shown in Figure 7.1.
During a linear data falsification attack, these malicious agents perturb the shared
messages by introducing noise. Let xj,n denote the information transmitted by
agent j at each time instant n, which can be expressed as

xj,n =

{
x̂j,n + 𝜹j,n j ∈ 

x̂j,n j ∉ ,
(7.11)

where 𝜹j,n ∈ ℝm is noise sequence added by the Byzantine agent, assumed here
Gaussian with zero mean and covariance 𝚺i ∈ ℝm×m [Bai et al., 2017; Chen et al.,
2018a], which is also the optimal sequence that maximizes stealthiness, i.e. evade
attack detection. In addition, we assume that the Byzantine agents co-operate to
design the attack sequence that maximizes the deterioration in the network per-
formance. To that end, in contrast to the attack sequences being independent,
i.e. 𝔼{𝜹i,n𝜹

T
j,n} = 𝟎 for all i ≠ j, a coordinated attack is given by correlated attack

Figure 7.1 Information exchanged in a network containing Byzantine agents.
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sequences with covariance matrix 𝚺 = 𝔼{𝜹n𝜹
T
n}, where the network-wide pertur-

bation vector is defined by 𝜹n = [𝜹T
1,n,… , 𝜹T

N,n]T with 𝜹j,n = 𝟎 if j ∉ .
The effect of Byzantine agents can be minimized using statistical approaches

proposed in Kailkhura et al. [2016], He et al. [2022], and Chen et al. [2018b–2019].
These techniques primarily focus on adjusting the weights of measurements
received from neighbors. Measurements suspected to be from Byzantine agents are
given lower weights, thereby minimizing their influence on the state estimates.
To provide robustness against adversaries, homomorphic encryption-based
schemes [Fauser and Zhang, 2020, 2021; Ni et al., 2021; Zhou et al., 2022],
randomization-based methods [Lin et al., 2019], and redundancy-based
approaches [Mitra and Sundaram, 2019; Rajput et al., 2019; Krishnamurthy
and Khorrami, 2021; Mitra et al., 2021] have also been proposed. In contrast, this
chapter focuses on distributed Kalman filtering algorithms using regularization
and distributed optimization to achieve robustness against Byzantine attacks.

7.3.1 Byzantine Robust Distributed Kalman Filter

Here, the distributed Kalman filter is formulated as a maximum-likelihood esti-
mation problem that bridges traditional Kalman filtering principles Olfati [2009]
with optimization techniques [Ryu and Back, 2019; Moradi et al., 2023]. In partic-
ular, as shown in Moradi et al. [2023], the a posteriori state estimates are obtained
by solving the following problem:

min
{xi,n}N

i=1

N∑
i=1

fi(xi,n)

s.t. xi,n = xj,n, ∀j ∈ i, i ∈  , (7.12)

where fi(xi,n) are local objectives given by

fi(xi,n) =
1
2
(
(yi,n − Hixi,n)TR−1

i (yi,n − Hixi,n) (7.13)

+ 1
N
(xi,n − x̂i,n|n−1)TP−1

i,n|n−1(xi,n − x̂i,n|n−1)
)
,

and the constraints in (7.12) enforce consensus among network agents. The DKF
problem finds optimal solutions for x∗

i,n, i ∈  , in (7.12). This leads to a posteriori
state estimates x̂n = [x̂T

1,n,… , x̂T
N,n]T where x̂i,n = x∗

i,n.
Inspired by Ben-Ameur et al. [2016] and Peng et al. [2021], the constraints in

(7.12) are approximated using a TV-norm penalty, enhancing resilience against
data falsification attacks. Hence, (7.12) is reformulated as:

x∗
n = min

{xi,n}N
i=1

N∑
i=1

⎛⎜⎜⎝f (xi,n) +
𝜆tv

2
∑
j∈i

||xi,n − xj,n||1

⎞⎟⎟⎠ , (7.14)
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where vector x∗
n = [(x∗

1,n)
T ,… , (x∗

N,n)
T]T comprises all local optimal parameters,

and penalty parameter 𝜆tv ensures that estimates xi,n and xj,n are kept close
together. Increasing 𝜆tv results in greater similarity between these estimates.
Nonetheless, the TV-norm penalty allows certain pairs of estimates to remain
distinct, which is essential whenever Byzantines are present.

The optimization problem in (7.14) can be solved using a subgradient
method [Peng et al., 2021; Moradi et al., 2023], resulting in the following local
state estimate update at agent i:

xl+1
i,n = xl

i,n − 𝛼n

⎛⎜⎜⎝∇xi,n
f (xl

i,n) + 𝜆tv

∑
j∈i

sign(xl
i,n − xl

j,n)
⎞⎟⎟⎠ . (7.15)

Here, 𝛼n > 0 is the step size, and xl
i,n represents the local-state estimate during

iteration l of the subgradient method. The element-wise sign function, denoted
as sign(⋅), assigns sign(x) = 1 for x > 0, and sign(x) = −1 for x < 0. If x = 0, sign(x)
takes an arbitrary value within the range [−1, 1]. Assuming the presence of a group
of Byzantine agents,  ⊂ and substituting the gradient ∇xi,n

f (xl
i,n), the state

update is obtained as:

xl+1
i,n = xl

i,n − 𝛼n

(
𝛀i,nxl

i,n − 𝜽i,n + 𝜆tv

∑
j∈i

sign(xl
i,n − xl

j,n)

+𝜆tv

∑
j∈i

sign(xl
i,n − x̃l

j,n)

)
, (7.16)

where, for agent i, i is the set of honest neighbors and i is the set of Byzantine
neighbors; thus, the corresponding Byzantine states in (7.16) are given by x̃l

j,n =
xl

j,n + 𝜹l
j. Finally, we have

𝛀i,n = HT
i R−1

i Hi +
1
N

P−1
i,n|n−1

𝜽i,n = HT
i R−1

i yi,n + 1
N
𝛀i,n|n−1x̂i,n|n−1,

(7.17)

with 𝛀i,n|n−1 = P−1
i,n|n−1. Notice that elements of sign(xl

i,n − x̃l
j,n) are constrained

to the interval [−1, 1]. Consequently, the final term in (7.16) mitigates the effect
of corrupted data from Byzantine agents, enhancing the robustness of the state
update.

Similarly, updating the error covariance necessitates formulating an optimiza-
tion problem to achieve consensus on the information matrices N𝛀i,n across
agents. The optimization problem for updating the error covariance is expressed
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as follows:

min
{𝜻 i}N

i=1

N∑
i=1

||𝜻 i − vech(N𝛀i,n)||2
2

s.t. 𝜻 i = 𝜻 j, ∀j ∈ i, i ∈  ⋅

(7.18)

The optimal solution to (7.18), 𝜻∗ = [(𝜻∗1)T ,… , (𝜻∗N )T]T , provides the average
of vech(N𝛀i,n) across the network. Consequently, the error covariance can
be updated using Pi,n = (vec−1

h (𝜻∗i ))
−1. Drawing from the TV-norm-penalized

optimization problem in (7.14), we adjust (7.18) as follows:

𝜻
∗ = min

{𝜻 i}N
i=1

N∑
i=1

⎛⎜⎜⎝||𝜻 i − vech(N𝛀i,n)||2
2 +

𝜆tv

2
∑
j∈i

||𝜻 i − 𝜻 j||1

⎞⎟⎟⎠ . (7.19)

Using a subgradient method similar to the one in (7.15), we obtain the following
update rule:

𝜻
l+1
i = 𝜻 l

i − 𝛾n

⎛⎜⎜⎝𝜻 l
i − vech(N𝛀i,n) + 𝜆tv

∑
j∈i

sign(𝜻 l
i − 𝜻

l
j)
⎞⎟⎟⎠ , (7.20)

where 𝛾n > 0 is the step size. After sufficient iterations, denoted by l∗, the subop-
timal solutions in (7.16) and (7.20) converge to (xl∗

i,n, 𝜻
l∗
i ). This results in updated

a posteriori state estimate x̂i,n = xl∗
i,n and error covariance Pi,n = (vec−1

h (𝜻 l∗
i ))

−1.
Algorithm 7.2 outlines the steps of the Byzantine-robust distributed Kalman fil-

ter (BR-DKF) under the assumption that Byzantine agents only manipulate state
estimates. Specifically, these agents alter state estimate xl

i,n at iteration l to xl
i,n +

𝜹
l
i, where 𝜹l

i ∼  (𝟎,𝚺i). Here, 𝚺i denotes the covariance of the noise-injection
sequence at agent i ∈ .

7.3.2 Performance Analysis

We will now show that the formulation in (7.14) provides a feasible solution
for sufficiently large penalty parameter 𝜆tv. Moreover, the suboptimal solution
in (7.16) is within a bounded radius to the optimal solution of (7.14), even
with Byzantine agents present. To facilitate future calculations, we define the
node-edge incidence matrix  = [aij] ∈ ℝN×||, where aei = 1 and aje = −1 for
each edge e = (i, j) ∈  with i < j; otherwise, elements of  are zero. As shall
be seen, we can establish that the solution in (7.14) is optimal and matches the
centralized Kalman filter (CKF) solution x̂∗

n from Ryu and Back [2019]. Further, a
lower bound for the penalty parameter 𝜆tv can be derived, ensuring convergence
of the solution in (7.14) to the centralized solution in Ryu and Back [2019].
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Algorithm 7.2 Byzantine-Robust Distributed Kalman Filter
For each agent i ∈ 

Initialize: 𝐱̂i,0 and 𝐏i,0
for all n > 0 do
𝐱̂i,n|n−1 = 𝐀𝐱̂i,n−1
𝐏i,n|n−1 = 𝐀𝐏i,n−1𝐀T +𝐐
𝛀i,n|n−1 = 𝐏−1

i,n|n−1
𝛀i,n = 𝐇T

i 𝐑
−1
i 𝐇i +

1
N
𝛀i,n|n−1

𝜽i,n = 𝐇T
i 𝐑

−1
i 𝐲i,n + 1

N
𝛀i,n|n−1𝐱̂i,n|n−1

Set 𝐱1
i,n = 𝟎 and 𝜻1

i = 𝟎
for l = 1 to l∗ do

Share 𝐱l
i,n + 𝜹l

i with neighbors if i ∈ 

𝐱l+1
i,n = 𝐱l

i,n − 𝛼n

(
𝛀i,n𝐱l

i,n − 𝜽i,n + 𝜆tv
∑

j∈i
sign(𝐱l

i,n − 𝐱̃l
j,n)

)
𝜻

l+1
i = 𝜻 l

i − 𝛾n

(
𝜻

l
i − 𝗏𝖾𝖼h(N𝛀i,n) + 𝜆tv

∑
j∈i

sign(𝜻 l
i − 𝜻

l
j)
)

end for
𝐱̂i,n = 𝐱l∗

i,n
𝐏i,n = (𝗏𝖾𝖼−1

h (𝜻 l∗
i ))

−1

end for

In particular, given a connected network topology, if 𝜆tv ≥ 𝜆0 where

𝜆0 =
√

N
𝜎min()

max
∀n

max
i∈

||𝛀i,nx∗
i,n − 𝜽i,n||∞, (7.21)

with 𝜎min() denoting the smallest nonzero singular value of , 𝛀i,n, and 𝜽i,n as
defined in (7.17); then, for the optimal solution x∗

n in (7.14) and the optimal solu-
tion of the CKF problem x̂∗

n in Ryu and Back [2019], we have x∗
n = 𝟏N ⊗ x̂∗

n.
With the assumptions stated above and 𝜆tv ≥ 𝜆0, the solution in (7.16), for each

agent i ∈  , including the presence of Byzantine agents, remains close to the
optimal solution x∗

n = 𝟏N ⊗ x∗
i,n in (7.14) with a radius of

lim
l→∞

𝔼l{||xl+1
i,n − x∗

i,n||2} ≤

𝜆2
tv𝛼n(4𝛼n + 1

𝜀
)(4|i|2 + |i|2)m

1 − ||(1 + 2𝛼2
n||𝛀i,n||2 + 2𝜀𝛼n

)
I − 2𝛼n𝛀i,n|| , (7.22)

where 0 ≤ 𝜀 ≤ 𝜆min(𝛀i,n), and i and i are, as in (7.16), the partitions of neighbor
set i containing honest and Byzantine agents, respectively. Step size 𝛼n must
satisfy

𝛼n ≤ min
i∈

{
𝜆min(𝛀i,n) − 𝜀||𝛀i,n||2

}
⋅ (7.23)
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The error gap in (7.22) demonstrates that the BR-DKF effectively mitigates the
influence of attack amplitude, primarily through the sign(⋅)-terms, although the
number of Byzantines still has an influence.

To assess the performance of the BR-DKF algorithm, we consider an undirected
random connected graph with N = 25 agents, including B = 5 Byzantines selected
among those agents having the most neighbors. We consider the following linear
dynamic system:

xn+1 =

⎡⎢⎢⎢⎢⎢⎣

0.4 0.9 0 0
−0.9 0.4 0 0

0 0 0.5 0.8
0 0 −0.8 0.5

⎤⎥⎥⎥⎥⎥⎦
xn + wn, and yi,n =

⎡⎢⎢⎢⎢⎢⎣

1 0 0 0
1 1 0 0
0 0 1 1
0 0 1 0

⎤⎥⎥⎥⎥⎥⎦
xn + vi,n,

with Q = 0.1I, and Ri = diag(0.1, 0.2, 0.3, 0.1). We compare the BR-DKF algorithm
against the CKF, the distributed Kalman filter (DKF) as per [Ryu and Back, 2019],
DKF under Byzantine attack (B-DKF), and the BR-DKF under Byzantine attack.
The state and error covariance of the BR-DKF were obtained by l∗ = 25 iterations
of the subgradient method, and the results were averaged over 500 realizations to
benchmark performance.

Figure 7.2 displays the tracking performance for the various state elements. The
shaded colors represent the estimated values of agents, and the solid curves indi-
cate their averages. We see that the BR-DKF decreases the uncertainty significantly
and tracks the true state more accurately than the B-DKF algorithm.

In the following, we consider the average MSE across agents, MSE =
1
N

∑N
i=1 ||xn − x̂i,n||2, as the performance measure. For the case when Byzan-

tines are absent, parameters 𝛼n, 𝛾n, and 𝜆tv are adjusted to achieve an MSE as close
as possible to the DKF algorithm. However, even in the absence of a Byzantine
attack, the performance of BR-DKF is inferior to that of DKF due to the presence
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Figure 7.2 Tracking performance for various state elements.
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Figure 7.3 Steady-state MSE versus the proportion of Byzantines.

of sign(⋅)-terms in the update. Here, Byzantine agents execute a coordinated
attack, where 𝚺i represents the covariance of the perturbation sequence injected
by Byzantine agent i ∈ .

Figure 7.3 shows MSE against the proportion of Byzantines for various algo-
rithms. It reveals a direct correlation between the increase in Byzantine agents
and the MSE. However, the sensitivity of BR-DKF to this percentage is notably
lower than that of B-DKF. Figure 7.4, on the other hand, demonstrates the MSE
against the attack power (i.e. the trace of the perturbation covariance). We see
that when the attack covariance has a low trace, the sign(⋅)-terms in the BR-DKF
constrain the updated values, leading to a higher MSE compared to the DKF.
However, as Byzantine agents introduce more noise, the BR-DKF maintains
stable performance, whereas the MSE of the B-DKF increases significantly.

Figure 7.4 Steady-state MSE versus Byzantine attack power.
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7.4 Privacy in Distributed Kalman Filters

From the generic distributed Kalman filtering algorithm in Algorithm 7.1, we can
observe that agents exchange information with neighbors to estimate the state
vector collectively using average consensus. However, the messages exchanged,
i.e. local state ri,n, contain information about local measurements which includes
private or sensitive information about the agent. The messages shared with
neighbors improve the state estimation accuracy but, at the same time, provide
information to potential adversaries to infer or extract private/sensitive informa-
tion about an agent. This results in contradictory objectives of maximizing the
state estimation accuracy while minimizing the private information leakage. In
other words, we encounter an inherent trade-off in accuracy and privacy when
designing distributed Kalman filtering algorithms. To understand the trade-off,
we need a metric that quantifies privacy leakage. In practice, the privacy leakage
is measured through metrics such as differential privacy, mutual information, KL
divergence, and uncertainty at the adversary.

7.4.1 Privacy Measures

A commonly used privacy metric is the (𝜖, 𝛿)-differential privacy. A randomized
algorithm  is considered (𝜖, 𝛿)-differentially private if for any two neighboring
datasets  and  ′ that differ by a single data sample, and for any subset of outputs
 ⊆ range(), the following condition holds:

Pr [() ∈ ] ≤ e𝜖 Pr [( ′) ∈ ] + 𝛿. (7.24)

This implies that the ratio of the probability distributions of () and ( ′) is
bounded by e𝜖 . Here, 𝜖 and 𝛿 are privacy parameters that determine the level of
privacy guaranteed by the algorithm. Smaller values of 𝜖 or 𝛿 indicate stronger
privacy protection.

In differential privacy, the data shared are curated such that inferring about a
single entity is prevented and can guarantee that an adversary cannot differentiate
an individual datum by removing or adding database entries. Differentially private
learning algorithms utilize perturbation mechanisms, i.e. adding controlled noise
to the shared data, to maintain privacy at the expense of accuracy. For example, to
prevent other agents or external eavesdroppers from inferring individual data,
local messages are perturbed with uncorrelated random sequences [Nozari et al.,
2017; He et al., 2020; Le Ny, 2020]. Solutions for differentially private Kalman
filtering, which aim to minimize MSE under differential privacy constraints, are
discussed in Wang et al. [2018], Degue and Le Ny [2017], and Le Ny and Pappas
[2014].

DP-based privacy methods [Dwork, 2008] are widely applied in distributed
learning and estimation algorithms when the specifics of the attack model and
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adversary’s information set are unknown. Generally considered a conservative
metric, these methods provide a worst-case privacy measure. Consequently, they
necessitate the use of perturbation noise with higher variance, which leads to a
notable decrease in performance.

In distributed Kalman filtering applications, an adversary may have access to
various types of information, such as state distributions, noise statistics, observa-
tion dynamics, and network details. We can model the prior knowledge and the
specific type of reconstruction attack an adversary might employ to extract sensi-
tive data. In these situations, traditional probabilistic indistinguishability metrics
like differential privacy or mutual information-based methods are inadequate to
capture the extent of private information known to adversaries.

In DKF applications, another privacy measure is the MSE of the adversaries’
estimates of the private information. The primary goal of DKF is to prevent
adversaries from inferring private data, and with a specified attack model and
information set, the MSE metric is more appropriate. This metric evaluates the
level of uncertainty faced by adversaries in estimating the private information of
agents based on the data they can access [Braca et al., 2016; Mo and Murray, 2017;
Wagner and Eckhoff, 2018].

7.4.2 Privacy-Preserving Distributed Kalman Filter

Consider the DKF algorithm described in Section 7.2. We assume, without loss
of generality, that the local states ri,n, which contain information about observa-
tions, are private. Therefore, the objective is to safeguard the private information
ri,n from being inferred by an adversary. Privacy leakage can be reduced through
two mechanisms [Moradi et al., 2022]. First, the amount of information exchanged
or shared with other agents can be reduced to restrict the information available to
the adversary. Second, we can reduce reconstruction accuracy or knowledge by
adding noise to the information exchanged.

To implement the first mechanism, we decompose the local state into a public
substate, denoted by 𝜶i,n ∈ ℝm, that is shared with neighbors, and a private sub-
state, denoted by 𝜷 i,n ∈ ℝm, that evolves locally and is not visible to neighbors,
as illustrated in Figure 7.5. To avoid privacy leakage of state ri,n during informa-
tion passing within a neighborhood, the initial values of the substates, 𝜶i,n(0) and
𝜷 i,n(0), are randomly drawn from the set of real numbers while requiring to satisfy
the relation 𝜶i,n(0) + 𝜷 i,n(0) = 2ri,n [Wang, 2019]. Hence, although 𝜷 i,n is hidden
from neighbors, it directly influences the evolution of 𝜶i,n.

Next, to increase the uncertainty of the adversary, public states are perturbed
by noise before being shared with neighbors; see, e.g. Mo and Murray [2017]. In
particular, agent i modifies its shared public state by adding a correlated noise
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Figure 7.5 Local state ri,n decomposed into a public substate 𝜶i,n and a private
substate 𝜷 i,n.

sequence 𝝎i(k), i.e. 𝜶̃i,n(k) = 𝜶i,n(k) + 𝝎i(k), defined as follows:

𝝎i(k) =
{
𝝂i(0) k = 0
𝜙k𝝂i(k) − 𝜙k−1𝝂i(k − 1) o.w.

(7.25)

with constant 𝜙 ∈ (0, 1) being shared among agents and 𝝂i(k) ∈ ℝm ∼  (𝟎, 𝜎2Im)
being spatially and temporally independent (for each k and i).

Consequently, during consensus iteration k, agent i updates its public and pri-
vate substates as:

𝜶i,n(k + 1) = 𝜶i,n(k) + 𝜀Ui(k)
(
𝜷 i,n(k) − 𝜶i,n(k)

)
+ 𝜀

∑
j∈i

𝑤ij(k)
(
𝜶̃j,n(k) − 𝜶i,n(k)

)
𝜷 i,n(k + 1) = 𝜷 i,n(k) + 𝜀Ui(k)

(
𝜶i,n(k) − 𝜷 i,n(k)

)
,

(7.26)

where 𝜀 is a step size, chosen in range (0, 1
Δ+1

], Δ ≜ max iNi, 𝑤ij(k) = 𝑤ji(k) is
the interaction weight with agent j, and coupling matrix Ui(k) ≜ diag(ui(k))
contains the coupling weight vector, ui(k) ∈ ℝm, on its diagonal matrix. To ensure
privacy, agents independently select the interaction weights and all elements of
the coupling weight vector at iteration k = 0, i.e. 𝑤ij(0) = 𝑤ji(0) and ui(0), from
the set of real numbers. For subsequent consensus iterations, i.e. for k > 0, these
values are restricted to fall in the range [𝜂, 1), with 0 < 𝜂 < 1. This condition
ensures that each agent appropriately weights the information received from its
neighbors. From (7.26), it is evident that the public substate is the only parameter
that directly incorporates information from neighbors during its update, while
the private substate update relies solely on information specific to the node.
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In the following analysis, the coupling and interaction weights are randomly
selected at k = 0 and kept fixed for k > 0, adhering to the mechanism described
in Wang [2019]. For simplicity, all interaction weights are compiled into matrix
W ≜ [𝑤ij] for k ≥ 1.

The privacy-preserving average consensus mechanism in (7.26) asymptotically
converges to the true average state, which is expressed as

lim
k→∞

𝜶i,n(k) = lim
k→∞

𝜷 i,n(k) =
1
N

N∑
i−1

ri,n.

In practice, the updates in (7.26) are performed for a fixed number of iterations,
say K, after which local state, x̂i,n|n, is set to:

x̂i,n|n = 𝜶i,n(K) ∀i ∈  .

Algorithm 7.3 summarizes the steps of the PP-DKF algorithm. Given that the num-
ber of consensus iterations used with PP-DKF is finite in practical scenarios, it is
important to address concerns regarding its impact on performance, convergence
behavior, and resulting privacy. These aspects are discussed next.

Algorithm 7.3 PP-DKF algorithm
For each agent i ∈ 

Initialize: 𝐱̂i,0|0 and 𝐏i,0|0
𝐱̂i,n|n−1 = 𝐀𝐱̂i,n−1|n−1
𝐏i,n|n−1 = 𝐀𝐏i,n−1|n−1𝐀T +𝐐
𝚪i,n = 𝐏−1

i,n|n−1 + N𝐇T
i 𝐑

−1
i 𝐇i

𝐏−1
i,n|n ←− Avg. Consensus ←− {𝚪j,n, ∀j ∈ i ∪ i}

ri,n = 𝐱̂i,n|n−1 + N𝐏i,n|n𝐇T
i 𝐑

−1
i

(
𝐲i,n −𝐇i𝐱̂i,n|n−1

)
Privacy-Preserving Mechanism:

Choose 𝜶i,n(0), and set 𝜷 i,n(0) = 2ri,n − 𝜶i,n(0)
Choose weights 𝑤ij(k),𝐮i(k)
Share weights 𝑤ij(k) within neighborhood
Generate {𝝎i(k), k = 0, 1,… ,K} based on (7.25)
Share 𝜶̃i,n(0) = 𝜶i,n(0) + 𝝎i(0)
for k = 1 to K do

Receive 𝜶̃j,n(k − 1), ∀j ∈ i
Update 𝜶i,n(k) and𝜷 i,n(k), as given in (7.26)
Share 𝜶̃i,n(k) = 𝜶i,n(k) + 𝝎i(k)

end for
𝐱̂i,n|n = 𝜶i,n(K)
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7.4.3 Privacy Guarantees

This section explores the privacy protections provided by the PP-DKF in the pres-
ence of an HBC agent. For this analysis, we designate agent N as the HBC agent,
which uses local and neighboring information to infer details of other agents.
According to Algorithm 7.3, the data available to the HBC agent after k consensus
iterations is as follows:

HBC(k) = {𝜶N,n(l), 𝜷N,n(l),𝝎N (l),uN (l), 𝑤Nj(l), 𝜶̃j,n(l) ∶ ∀j ∈ N}k
l=0

We can observe that the level of privacy for an agent depends on the adver-
sary’s prior knowledge about the interaction and coupling weights in use.
To evaluate the worst-case attack scenario, we assume the HBC agent has
full access to weight matrix W and an estimate Û of the coupling weight
matrix U. Consequently, the adversary’s information set can be expressed as
̃HBC(k) = HBC(k) ∪ {W(l),Û(l)}k

l=0.
Here, we consider the local estimate rj,n as private since it captures the local

a posteriori estimate, which holds more node-specific details compared to the
global a posteriori state estimate x̂j,n|n. With the information set ̃HBC(k), the
HBC agent aims to estimate the initial substates of all network agents and, with
those at hand, infer the local state information using the known relationship
rn = 0.5(𝜶n(0) + 𝜷n(0)).

Following the approach in Wagner and Eckhoff [2018] and Mo and Murray
[2017], we consider that the adversary employs an estimator to determine the
private states of agents at time n, specifically, rj,n. Accordingly, we use the MSE of
the adversary’s estimate as a measure of privacy. Let r̂j,n(k) denote the estimated
private information of agent j at time n and after k consensus iterations. The
corresponding privacy loss, denoted by j,n(k), is defined as

j,n(k) ≜ 𝔼{||rj,n − r̂j,n(k)||2}. (7.27)

To compute the privacy value j,n(k), we model the observation vector at the
adversary, incorporating the shared information from neighbors and the HBC
agent’s data available at iteration k, as follows:

yn(k) = Czn(k) + C𝛼𝝎(k), (7.28)

where zn(k) = [𝜶T
n (k), 𝜷

T
n (k)]T with 𝜶n(k) = [𝜶T

1,n(k),… ,𝜶T
N,n(k)]

T and 𝜷n(k) =
[𝜷T

1,n(k),… , 𝜷T
N,n(k)]T . To capture the relevant set of information, we define

C ≜ [C𝛼,C𝛽] with C𝛽 =
[
𝟎, eN

]T
⊗ Im capturing the private substate of the

HBC agent and C𝛼 =
[
ej1
,… , ejNN

, eN

]T
⊗ Im capturing the public substates of

neighbors and the HBC agent. Vector ej ∈ ℝN is the kth standard basis, and
N = {j1,… , jNN

} represents the HBC agent’s adjacency set with cardinality NN .
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By substituting the network-wide update equations in (7.26) into (7.28), the
observation model at iteration kth is given by:

yn(k) = CGkzn(0) + C𝛼

(k−1∑
t=0

k−1−t𝝎(t) + 𝝎(k)

)
, (7.29)

where k =
[
I 𝟎

]
Gk[I 𝟎

]T , 𝝎(k) = [𝝎T
1 (k),… ,𝝎T

N (k)]
T , and  = 𝜀(W⊗ Im).

Given that 𝝂(k) = [𝝂T
1 (k),… , 𝝂T

N (k)]
T is a zero-mean i.i.d. sequence, stacking all

observations up till iteration k into a vector yields:⎡⎢⎢⎢⎢⎢⎢⎢⎣

∑0
t=0 yn(t)
𝜙0∑1

t=0 yn(t)
𝜙1

⋮∑k
t=0 yn(t)
𝜙k

⎤⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎣

C
𝜙0

C(I+G)
𝜙1

⋮

C(I+
∑k

t=1 Gt)
𝜙k

⎤⎥⎥⎥⎥⎥⎥⎥⎦
⏟⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏟

H(k)

zn(0) +

⎡⎢⎢⎢⎢⎣
F̂0 𝟎 · · · 𝟎
F̂1 F̂0 · · · 𝟎
⋮ ⋮ ⋱ ⋮

F̂k−1 F̂k−2 · · · F̂0

⎤⎥⎥⎥⎥⎦
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

F(k)

⎡⎢⎢⎢⎢⎣
𝝂(0)
𝝂(1)
⋮
𝝂(k)

⎤⎥⎥⎥⎥⎦
, (7.30)

where F̂0 = C𝛼 and F̂k = 𝜀

𝜙k+1 C𝛼k(W⊗ Im) for k ≥ 1.
With the above at hand, we can now quantify the worst-case privacy loss. In par-

ticular, assuming an HBC agent gains access to the above information set ̃HBC(k),
comprising estimate Û = U + 𝚫U, with 𝚫U denoting the uncertainty, {W(l)}k

l=0,
and messages exchanged by its neighbors, the resulting error covariance for the
estimate of [𝜶T

n (0), 𝜷
T
n (0)]T is given by

P̃n(k) = Pn(k) + 𝔼U
{
𝜀2H†(k)𝚫H(k)𝚷̃n𝚫T

H(k)(H
†(k))T} , (7.31)

Here, 𝚷̃n = 𝟏2N𝟏T
2N ⊗ 𝔼{xnxT

n}, and

Pn(k) = 𝔼U
{
𝜀2H†(k)𝚫H(k)𝚺̃n𝚫T

H(k)(H
†(k))T (7.32)

+ 𝜎2(I − 𝜀H†(k)𝚫H(k))H†(k)F(k)FT(k)(H†(k))T

(I − 𝜀H†(k)𝚫H(k))T} ,
with 𝚺̃n being the error covariance, while H(k) and F(k) are defined in (7.30), and

𝚫H(k) =

⎡⎢⎢⎢⎢⎣
𝟎

𝜙−1C𝚫G1

⋮
𝜙−kC

∑k
t=1 𝚫Gt

⎤⎥⎥⎥⎥⎦
,

with 𝚫Gk
=

∑k
t=1

k!𝜀t−1

(k−t)!t!
Gk−t𝚫t

G1
, 𝚫G1

= −T𝚫U, and  = [−I, I].
It can be shown that the first term in (7.31) converges to the fixed matrix

PLB(k) = limn→∞Pn(k) as limn→∞𝚺̃n = 𝚺̃, while the second term diverges with



7.4 Privacy in Distributed Kalman Filters 177

limn→∞tr
(
𝔼{xnxT

n}
)
= ∞ [Moradi et al., 2022]. Thus, the lower bound of the

privacy leakage at agent j following k consensus iterations can be expressed as:

 j(k) = tr
(
(eT

j ⊗ Im)P(k)(ej ⊗ Im)
)

(7.33)

where P(k) = 1
4

[
I I

]
PLB(k)

[
I I

]T . In the extreme case where the HBC agent has
perfect knowledge of U, P̃n(k) in (7.31) becomes independent of n and reduces to:

P̃(k) = 𝜎2
(

HT(k)
(
F(k)FT(k)

)−1H(k)
)−1

. (7.34)

7.4.4 Simulation Results

In this section, we demonstrate the performance of the PP-DKF algorithm through
numerical simulations and theoretical bounds, as presented in (7.34). We con-
sider an arbitrary, undirected, and connected network comprising N = 25 agents.
The PP-DKF is applied to track the velocity and position of a moving target in a
two-dimensional space according to the following state equation:

xn =

[
I2 ΔTI2
𝟎2 I2

]
xn−1 +

[
1
2
(ΔT)2I2

ΔTI2

]
wn

where state vector xn = [Xn,Yn, Ẋn, Ẏ n]T comprises positions {Xn,Yn} and veloci-
ties {Ẋn, Ẏ n} in the horizontal and vertical directions, respectively, wn = [Ẍn, Ÿn]T

represents the unknown acceleration in both directions, andΔT = 0.04 is the sam-
pling interval. The acceleration is modeled as a Gaussian process with zero mean
and covariance 𝔼{wnwT

n} = 1.44 I2. The observation parameters for each agents
i ∈  are given by:

Hi =
[
I2 𝟎2

]
and Ri =

[
0.0416 0.008
0.008 0.04

]
.

For comparison, we also consider a DKF that utilizes only the noise-injection-
based average consensus technique proposed in Mo and Murray [2017], where
the injected noise follows (7.25). We will henceforth refer to this method as the
noise-injection-based privacy-preserving DKF (NIP-DKF). The consensus param-
eter 𝜀 is set at 1∕4, and the noise parameter 𝜙 is assigned a value of 0.9. The
interaction weight matrix W is specified as 0.75 E, where E denotes the adjacency
matrix. The components of the coupling weight vector ui are independently sam-
pled from the distribution  (𝜂, 1) with 𝜂 = 0.4. The number of consensus itera-
tions employed is fixed at K = 30 for the duration of the experiment.

Figure 7.6 shows the perturbation variance 𝜎2 versus MSE for the different
Kalman filtering algorithms. As anticipated, higher perturbation noise variance
leads to a degradation in MSE performance compared to the conventional
DKF in Algorithm 7.1. However, the PP-DKF demonstrates a more gradual
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Figure 7.6 Average MSE of the DKF as a function of noise variance 𝜎2, comparing
theoretical and simulation results.

increase in MSE than NIP-DKF, showcasing its better resilience to injected noise.
Furthermore, the results predicted by theory for both algorithms closely match
simulations.

To gain deeper insights into the privacy preservation of the PP-DKF in the pres-
ence of an HBC agent, we consider a smaller network with five agents, as shown
in Figure 7.7, where the fifth agent is considered to be the HBC agent, indicated
by the dark gray. The HBC agent does not have access to the coupling weights of
the other agents, whereas a legitimate network agent is aware of the parameter 𝜂.
For the estimation purpose, the HBC agent employs an average value U, based
on the distribution of the coupling weights and accounting for the uncertainty
𝚫U = U − U.

4

1 2

35

Figure 7.7 Diagram
showing the employed
network topology having
N = 5 interconnected
agents.

Figure 7.8 illustrates the lower bound on the pri-
vacy in (7.33) against the variance of the noise
injected by Byzantines. The results indicate that
using the NIP-DKF compromises the privacy of
agent four due to its limited number of neighbors,
which includes only the HBC agent. Consequently,
the HBC agent can accurately determine the initial
state of agent four with minimal error. The PP-DKF
method, on the other hand, considerably improves
the privacy of all agents, even when only a minimal
amount of noise is added.
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Figure 7.8 Privacy of agents versus noise variance (𝜎2). Results are shown only for agent
1 due to symmetric topology, which gives agents 1 and 3 identical privacy levels.

Figure 7.9 Privacy-accuracy tradeoff.

Figure 7.9 illustrates the tradeoff between filtering accuracy and average pri-
vacy

∑4
j=1  j(k)∕4. It specifically shows the privacy-MSE tradeoff for different val-

ues of injected noise variance 𝜎2. An increase in privacy guarantees leads to a
decrease in filtering accuracy, as indicated by a higher MSE. Furthermore, it can
be observed that for a given privacy guarantee, PP-DKF achieves the lowest MSE;
this is because it only injects noise into the public substate, in contrast to NIP-DKF,
which perturbs the entire state.
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8.1 Introduction

Anomaly detection deals with finding abnormal data patterns [Chandola et al.,
2009]. Its applications are seen in a wide range of areas, such as cybersecurity
[Xiang et al., 2011; Cui et al., 2019], hardware security [Elnaggar et al., 2019],
medical health care [Zhang et al., 2018], surveillance videos [Ravanbakhsh,
2019], and aviation [Matthews, 2019]. Anomaly detection is a crucial task since
an anomaly in the observed data may be a precursor of an unwanted and often
actionable event such as failure and malicious activity in the system. In many
real-time systems, timely and accurate detection of unexpected data patterns is
critical and will allow proper countermeasures to be taken to prevent potential
damage. Although anomaly detection has long been studied [Chandola et al.,
2009], today’s complex networks exhibit new challenges, including:

1) Low-latency requirements: Timely detection of anomalies in an intricate
network is essential since local anomalies can quickly spread in the network
causing large-scale problems, due to complex interactions between nodes and
interdependency between networks. For instance, Internet of Things (IoT)
enables real-time interaction and optimization between critical infrastruc-
tures, such as smart power grid and intelligent transportation system (ITS),
forming a smart city network.

2) Data size: High dimensionality (e.g. a large number of devices in IoT or surveil-
lance video streaming) renders learning baseline and online monitoring diffi-
cult. Hence, computationally efficient approximate methods are needed.

* This work is funded by US National Science Foundation under the Grant #2040572.

Wireless Sensor Networks in Smart Environments: Enabling Digitalization from Fundamentals to Advanced
Solutions, First Edition. Edited by Domenico Ciuonzo and Pierluigi Salvo Rossi.
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3) System dynamics: Due to the cyber-physical nature of today’s complex
networks (e.g. IoT, smart grid, and ITS) and sophisticated anomalies such
as attacks from skilled adversaries, the dynamics (i.e. change in time) of
baselines and anomalies should be taken into account for effective detection
and mitigation of threats.

4) Unknown distributions: Due to disparate devices or data types (e.g.
numerical and categorical) in the network, probability distributions can be
quite complicated such that model-based anomaly detection approaches are
not suitable. For instance, in an IoT network with different device types
(e.g. smart home appliances, wearable devices, and smart vehicles), it is very
resource-demanding (computation, energy, and time) to accurately estimate
the joint probability distribution of measurements collected in the network.
Furthermore, the myriad of vulnerabilities makes it intractable to estimate the
anomaly distributions.

5) Distributed nature: Complex networks in general consist of several com-
ponents which need to carry out some tasks locally due to either resource
constraints (e.g. energy and communication bandwidth) or privacy concerns.
This is especially relevant in networks for critical infrastructure, such as smart
grid, as well as networks with human users, such as social networks and IoT
networks.

6) Privacy: In networks with sensitive information, such as personal power con-
sumption in smart grid or data consumption in IoT network, network-wide
anomaly detection should be performed while preserving users’ privacy.

These challenges and the solution methods presented here are generally
applicable to a variety of complex systems, such as surveillance camera network
and smart home network. The main motivation of this chapter is to study
real-time data-driven anomaly detection for complex systems under the chal-
lenges explained above. Specifically, we study resource and privacy constraints
common to decentralized/distributed systems, such as energy and communi-
cation bandwidth constraints. We propose event-triggered sampling methods to
effectively summarize observed local data, and at the same time achieve accurate
and timely detection. We also propose a privacy-preserving mechanism for online
(i.e. real-time) anomaly detection in terms of distributed differential privacy.

8.2 Background and Literature Review

Consider a network consisting of N nodes where each node n ∈ {1, 2,… ,N} has
an observation xt,n ∈ ℝmn at each discrete time t ∈ ℤ, where mn ≫ 1 denotes the
data dimensionality. At an unknown time 𝜏, an unexpected event (anomaly) hap-
pens in the network, e.g. a cyber-attack, and the network deviates from its nominal
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operation. A change in the statistical properties of the data-generating process is
expected due to the anomaly. For the network-wide data xt ≜ [xT

t,1, x
T
t,2,… , xT

t,N ]
T ,

with T denoting the transpose, we can write

xt ∼ f x
0 , if t < 𝜏, and xt ∼ f x

1 ≠ f x
0 , if t ≥ 𝜏,

where f x
0 denotes the probability density function (pdf) of xt under nominal con-

ditions and f x
1 denotes the pdf of xt after the anomaly occurs.

The objective is to detect network-wide anomalies in a timely fashion using
the observed data sequence, which corresponds to a sequential change detection
(SCD) problem [Basseville and Nikiforov, 1993]. When new observation arrives,
a binary decision is made: declare a change (anomaly) or continue receiving
more data in the next time interval. The aim is to detect the changes as quickly
as possible after they occur while satisfying a constraint on the false alarm
probability. In the literature, there are two main approaches for modeling the
change-point. It is modeled as either a deterministic unknown quantity (minimax
formulation [Lorden, 1971; Pollak, 1985]) or a random variable with a known
geometric distribution (Bayesian formulation Shiryaev [1978]). For instance,
Lorden’s well-known minimax problem aims to minimize the worst-case average
detection delay (ADD) subject to an upper bound on the false alarm probability
(FAP) Lorden [1971]. In cases where the probabilistic data models f x

0 and f x
1 are

known and the network-wide data {xt} is accessible to a decision maker, the
cumulative sum (CUSUM) algorithm is the optimal solution to such minimax
problem. Furthermore, if the data models are known except for some unknown
parameters, the generalized CUSUM algorithm, making use of the estimates
of unknown parameters, has asymptotic optimality properties [Basseville and
Nikiforov, 1993, Sec. 5.3]. However, for large-scale heterogeneous networks,
such as IoT networks, usually the nominal pdf f x

0 might be difficult to model
or intractable to estimate [Laxhammar and Falkman, 2014]. It is especially
challenging to model the anomalous pdf f x

1 because of the myriad of possible
anomaly forms depending on the type and cause of the anomalies [Kurt et al.,
2019a]. Hence, in this chapter, we assume both f x

0 and f x
1 are unknown, and focus

on the nonparametric methods that are free of statistical data model assumptions,
robust to the data model mismatch, and widely applicable.

Early nonparametric SCD methods have various limitations such as normality
assumption [Zou et al., 2009; Xie et al., 2013, 2015; Enikeeva and Harchaoui,
2013], window-based operation [Kifer et al., 2004; Desobry et al., 2005; Harchaoui
et al., 2009; Liu et al., 2013; Zou et al., 2014; Li et al., 2015b], and specific change
structures [Aue et al., 2009; Zou et al., 2009; Enikeeva and Harchaoui, 2013; Xie
and Siegmund, 2013; Banerjee et al., 2015; Banerjee and Hero, 2016]. Several
recent generic nonparametric methods suffer from high computational complex-
ity [Chen, 2018; Zambon et al., 2018a,2018b]. Moreover, distributed SCD has also
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been discussed, albeit in a parametric setting with the independence assumption
[Veeravalli et al., 1993; Hussain, 1994; Tartakovsky and Veeravalli, 2004, 2008;
Mei, 2008, 2010; Fellouris and Moustakides, 2011; Xie and Siegmund, 2013; Jirak,
2015]. Hence, the existing SCD methods cannot address resource constraints
and unknown probability distributions in complex distributed systems, such as
large-scale heterogeneous IoT networks.

Neural network-based methods have become very popular in various machine
learning tasks including anomaly detection [Sabokrou et al., 2018; Chatillon
and Ballester, 2019; Ravanbakhsh, 2019]. However, they are not suitable for
online/continual learning as their deep neural network classifiers typically
require a long time to update with a new batch of samples [Liu et al., 2018;
Ionescu et al., 2019]. Moreover, differential privacy has been attracting significant
interest in machine learning and signal processing [Dwork et al., 2006a; Shi et al.,
2011; Jain et al., 2012; Fan and Xiong, 2013; Le Ny and Pappas, 2013; Sarwate and
Chaudhuri, 2013; Song et al., 2013; Dwork and Roth, 2014; Leontiadis et al., 2014;
Ghassemi et al., 2016; Agarwal et al., 2018; Cummings et al., 2018; Degue and Le
Ny, 2018; Li et al., 2018; Zhang and Zhu, 2018; Keshk et al., 2019; Canonne et al.,
2019]. In particular, there are a few works focusing on change detection under
privacy constraints. While Keshk et al. [2019] claimed practical privacy benefits
without rigorous privacy analysis, Cummings et al. [2018] provided provable
privacy guarantees, but for known pre- and post-change data models.

8.3 Event-Triggered Anomaly Detection

In large-scale distributed networks, sometimes it may not be feasible to trans-
mit raw observations collected at the network edge (i.e. nodes) to the network
center. One reason is the resource constraints (e.g. energy and communication
bandwidth constraints), which is typical in distributed systems where nodes are
battery-powered devices and the transmission medium is wireless, such as IoT net-
works. Another reason is the so-called big data challenge: in a complex network,
vast amount of heterogeneous data needs to be processed in real time. Instead of
gathering and processing all raw data in the network center, an effective way is
to summarize the local data at the nodes and let the center deal with the gist of
collected data. Yet another reason could be the privacy of users in the network.
To preserve the privacy of the raw data, some salient features relevant to the con-
sidered task, such as some statistics useful for anomaly detection, can be sent to
the center.

In all these cases, the method that is used to summarize data needs to be
accurate while satisfying the potential resource (e.g. computation, energy, and
bandwidth) constraints. This can be achieved by detecting characteristic “events”
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in the observations which typically summarize the observed data well with
regard to the considered task, and have binary representations denoting pres-
ence/absence. In addition to preserving data privacy, event-based processing also
provides secure transmission against jamming and eavesdropping. Specifically,
the presence of an event can be reported by transmitting a single pulse using
ultra-wide band (UWB) communications [Sahinoglu et al., 2008], whose wide
spectrum of frequency bands provides robustness to jamming attacks. Moreover,
since data is encoded in events, an eavesdropper needs to know the event type to
understand the transmitted bits.

Considering model-based methods for several resource-constrained networks,
transmitting local sufficient statistics (e.g. log-likelihood ratio) using a family of
simple but effective techniques called event-triggered sampling [Yilmaz et al., 2015]
have been studied. Specifically, level-triggered sampling (LTS) and level-crossing
sampling (LCS), for which the underlying event is the crossing of some levels by the
signal to be transmitted, as shown in Figure 8.1, have been extensively studied. LTS
and LCS only differ in their treatment of the overshoot values (𝜖i,n in Figure 8.1),1
and they coincide for continuous-time signals (no overshoot case).

LTS/LCS was used to report local decision statistic yt,n from node n over time
t = 1, 2,… to the network center (a.k.a. fusion center) [Yılmaz et al., 2012, 2013,
Feb. 2016; Yılmaz and Wang, 2014a,2014b; Li et al., 2015a]. In such event-based
schemes, sampling and transmission occur at random event times (denoted with
𝜏i,n in Figure 8.1), as opposed to the traditional uniform-in-time sampling which
periodically transmits at fixed times. Each level crossing at time 𝜏i,n is reported to
the network center by node n as a binary code ei,n ∈ {−1, 1}, where −1∕1 denotes

Figure 8.1
Level-crossing sampling.
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1 LTS dynamically sets the sampling levels according to the overshoot values Yılmaz et al.
[2012, 2015], as opposed to LCS.
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negative/positive Δ change in the level of yt,n. Note that infrequent transmission
of such binary information satisfies resource constraints; and the network center
is able to track the local decision statistic yt,n with an error bounded by Δ.

In previous work on LTS/LCS, a single event type (level crossings by signal
magnitude) was considered at distributed nodes, and a single model-based data
processing strategy at the network center with known probability distributions.
However, in general, different event definitions are needed for nodes in different
complex systems, such as appearance of an object (e.g. vehicle in walkway) or
suspicious action (e.g. running) in the surveillance camera network. Similarly,
different data processing techniques are needed at the network center for dif-
ferent tasks, such as detecting anomalies in the event sequences of surveillance
camera networks. Hence, we investigate novel event types for nodes, and novel
model-based and model-free data processing techniques for the network center.

8.3.1 Event Definitions at Nodes

Events are defined for the entity to be transmitted, i.e. raw data or a processed
form such as detection statistic. In general, domain-specific events can be defined
directly for the raw data to be detected at the network edge where it is observed.
Such edge processing of raw data for detecting important events will also prevent
error propagation and information loss which occurs when the network center
processes the quantized raw data received from the network edge. LTS/LCS can
be classified under the magnitude-based approach which defines event of interest
based on the magnitude of the signal to be transmitted. A number of other
approaches can be considered to develop a general framework for event-based
anomaly detection.

i) Frequency-based events: Changes in the frequency content of the
observed data may define an important event in some applications, such as
denial-of-service (DoS) attack, in which data rate may gradually increase
possibly from a number of users – distributed DoS (DDoS).

ii) Object-based events: In a network of surveillance cameras where continu-
ous transmission of observed image/video to the network center is not feasi-
ble (e.g. unmanned aerial vehicle (UAV) networks), object-based processing
can greatly facilitate network-wide anomaly detection. With the fast advanc-
ing hardware (computational power) and software (computational efficiency)
technologies, it is now possible to do real-time object detection at a network
node Redmon and Farhadi [2016]. Network-wide anomaly detection can be
efficiently achieved with low-rate event stream (i.e. presence of objects) at the
center.

iii) Novelty-based events: It is not obvious how to define a characteristic event
if a node itself receives high-dimensional data at each time from its possibly
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heterogeneous sensors, such as in a vehicular ad hoc network (VANET). In
this case, model-free novelty/anomaly detection algorithms can be used to
detect novel sets of measurements, which are sent to the network center
that performs network-wide anomaly detection. Although not as low rate as
binary event reports, this novelty-based reporting approach can ensure the
transmission of only the informative data instances and help satisfy resource
constraints.

8.3.2 Parametric Processing at Network Center

As an event sequence et,n sequentially arrives from each node n to the network
center, the network center may try to fit a probability distribution to the nomi-
nal (and possibly anomalous) training event sequences, and look for anomalies in
received test sequences by sequentially comparing the likelihood under the nom-
inal model (or the log-likelihood ratio) with a threshold, which is set to satisfy a
false alarm probability constraint. In our preliminary work [Yılmaz et al., 2013],
the times when et,n ≠ 0 are sensed by the center, and positive (et,n = 1) or nega-
tive (et,n = −1) Δ change (Figure 8.1) is modeled using Bernoulli distribution. It
was shown that, by computing the likelihoods of the received event sequences it
is possible to achieve strong asymptotic optimality in terms of average detection
delay while satisfying strict error probability constraints [Yilmaz et al., 2012, 2015].
Optimum communication schemes were designed when et,n is reported through
different noisy channel models [Yılmaz et al., 2013].

i) Temporal anomalies: The above parametric approach will fail for the
challenging cases where the reported events look nominal, but anomalies
exist in other aspects, such as timing of events. Renewal processes can be used
to model the waiting times between event arrivals and also the propagation
times of certain events through the nodes. In Figure 8.2, the event arrivals
(shown by vertical lines) may correspond to the occurrence of the same type
of events at a node or throughout the network. In general, for independent
waiting times with distribution 𝑤i ∼ f0(𝜃0), we have a renewal process, and
we can test for possible changes in the parameter or the distribution itself
by considering an alternative distribution f1(𝜃1). Specifically, we can apply a
CUSUM test [Basseville and Nikiforov, 1993] using the log-likelihood ratio

tτ1 τ2 τ3 τ4 τ50

w1 w2 w3 w4 w5

Figure 8.2 Event times and waiting times.
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log[ f1(𝑤i|𝜃1)∕f0(𝑤i|𝜃0)]. Domain knowledge and training sets can be used to
estimate f0(𝜃0) and f1(𝜃1). For instance, when the waiting times are independent
and exponentially distributed, i.e. 𝑤i ∼ f0(𝜃0) = exp(𝜆0), we have Poisson pro-
cess for the number of events in a period of time, i.e. N(t, t + h) ∼ Poisson(𝜆0h).
In such a case, depending on the domain knowledge, an increase or a decrease
in the arrival rate can be tested, i.e. f1(𝜃1) = exp(𝜆1), 𝜆1 ≠ 𝜆0. Moreover,
multiple event sequences et = [et,1 … et,N ] can be monitored jointly. Assuming
independence over time the number of points in a region in the N-dimensional
Euclidean space defines a (nonstationary in general) Poisson point process,
where the probability distribution of et determines the possibly non-stationary
rate 𝜆(et).

ii) Markov process: Denoting the network state at time t with et, we can
learn the state transition probabilities pi,j = P(et+1 = state j|et = state i). Then
using the learned Markov process we can sequentially detect anomalies via
a CUSUM-like algorithm using the log-likelihood ratio between pi,j and a
constant critical value p𝛼 , which can be taken as the 1 − 𝛼 percentile of all state
transition probabilities. This corresponds to testing the nominal distribution
against the uniform distribution that has 1∕p𝛼 accessible states.

8.3.3 Nonparametric Processing at Network Center

For network-wide monitoring of events, we need to consider the joint probability
of event states et = [et,1 … et,N ]. When N is large, it becomes intractable to estimate
the high-dimensional joint distribution or even to fit a parametric model as the
number of training samples needed for accurate estimation grows quickly with the
number of dimensions (i.e. nodes). Similarly, monitoring the event sequences over
time without the Markov assumption to capture the multi-step temporal correla-
tions also requires the estimation of the joint probability distribution of the event
sequences. Hence, for such high-dimensional problems, we resort to model-free,
i.e. nonparametric, methods.

The ODIT algorithm described in Mozaffari et al. [2022] may be used for
monitoring network-wide events et at each time since no specific data type
is assumed in ODIT. ODIT-like distance-based approaches can be studied for
monitoring event sequences. A natural question is: What is a suitable similarity/
dissimilarity metric for event sequences? In the case of multi-event sequences
where et,n ∈ {0, 1,… ,K}, where K ≫ 1, some results from the time series
analysis literature, e.g. Serrà and Arcos [2014], Batista et al. [2011], Kaya and
Gündüz-Öğüdücü [2015], and Lhermitte et al. [2011], can be borrowed as in
this case event sequence looks more like a typical time series. However, in a
binary event sequence where et,n ∈ {0, 1}, this question becomes important.
Recently in Moser and Natschlager [2014] and Moser [2017], a rigorous answer to
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this question has been provided, where it is shown that Weyl’s discrepancy norm||et,1 − et,2||D = supt1 ,t2∈ℕ∶t1≤t2

|||∑t2
t=t1

et,1 − et,2
||| is a suitable metric for comparing

binary event sequences et,1 and et,2.
In Figure 8.3, the top figure shows a sample path of et,1 ∈ {0, 1}, and the other

two figures plot the discrepancy norm ||et,1 − et,2||D, Euclidean distance, and
Hamming distance between et,1 and et,2. All distances are normalized by the
sequence length 100 and averaged over 1000 trials. In the middle figure, et,2 = et−𝜏,1
(i.e. delayed) and et,1 = 0 for t < 0, whereas in the bottom figure et,2 ≠ et,1
(i.e. flipped) with probability p. These cases respectively corresponds to practical
communication channels with delay and bit error. While the discrepancy norm
smoothly reacts to increasing delay, the Euclidean distance and especially
Hamming distance overreacts to small values of delay, which are highly probable
in practical communication channels. After a sharp increase for the smallest delay
value of 1, Euclidean and Hamming distances are not responsive to changing
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delay values. In the bottom figure which corresponds to a binary symmetric
channel, it is also seen in the bottom figure that Hamming distance overreacts to
possible bit errors while discrepancy norm and Euclidean distance react smoothly
to this common type of communication error.

8.4 Privacy-Preserving Anomaly Detection

In distributed networks where each node holds privacy-sensitive data, data-driven
statistical inference process has the risk of violating the privacy of data
providers [Sarwate and Chaudhuri, 2013; Dwork and Roth, 2014]. For example,
in distribution smart grids, user electricity consumption patterns can be used
to build sensitive user profiles for malicious purposes. Hence, usually a balance
between data utilization and data privacy needs to be sought. Differential privacy
(DP) [Dwork and Roth, 2014] is a probabilistic framework based on the notion
of indistinguishability. Specifically, it cannot be inferred whether any specific
node/user/device contributed to the data by observing an output of a differentially
private algorithm, which provides almost the same level of privacy to each data
provider. In other words, the output likelihood of a differentially private algorithm
is not significantly changed by the change/removal of the data of any single data
provider. In this framework, privacy is mainly attained by randomizing the
released statistics from a database, where the worst-case privacy risk can be
quantified and adjusted with the level of randomization [Sarwate and Chaudhuri,
2013]. We will study real-time distributed anomaly detection over IoT networks
under DP constraints.

In distributed settings where the data is privacy sensitive, nodes may only be
willing to disclose some minimal information aligned with the anomaly detec-
tion task in an encrypted form because of privacy concerns, e.g. local differential
privacy [Kasiviswanathan et al., 2011]. Considering such a setting, let every node n,
based on its observation xt,n, share a univariate signal zt,n with the network center
at each time t. The network center then receives zt ≜ [zt,1, zt,2,… , zt,N ] and decides
on the anomaly based on the sequence of {zt}. Under this general setup, our goal
is to introduce a novel method that provides (i) model-free real-time processing of
the observed local data stream and disclosure of minimal task-oriented informa-
tion at each node, (ii) differentially private aggregation of the node messages at the
center, and (iii) quick and reliable network-wide anomaly detection.

We propose a solution scheme consisting of local data processing, private stream
aggregation, and real-time anomaly detection (see Figure 8.4). First, sensitive
data is analyzed and processed locally at each node, and a minimal task-oriented
univariate statistic is extracted for the anomaly detection task, where the local
data processing is free of data model assumptions. The output of the local data
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Figure 8.4 The proposed solution scheme for DP-enabled network-wide anomaly
detection.

processing of node n is the p-value pt,n of observations at time t, which is the
percentage of the training instances whose task-oriented univariate statistics are
higher than that of the observations at time t (i.e. one minus cdf). Second, for
DP, instead of releasing the extracted information directly, it is first perturbed by
additive noise, e.g. 𝑣t,n ∼  (0, 𝜎2), resulting in the perturbed statistic

p̃t,n = pt,n + 𝑣t,n.

Next, a form of cryptographic communication is used between the nodes and the
network center to ensure that the network center can only decrypt an aggregate
statistic (p-value) over the entire network but not the individual node information.
Specifically, each node n produces a private positive number kt,n at time t, which
cannot be tracked by outsiders (e.g. a time-varying random variable); adds it to
p̃t,n, and obtains the signal

zt,n = p̃t,n + kt,n

transmitted to the network center. Moreover, an auxiliary node helps for the
cryptographic communication, as described in Leontiadis et al. [2014]. It receives
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the keys from the nodes and transmits the negative average of the keys

at = − 1
N

N∑
n=1

kt,n

to the network center.
After receiving {zt,n,n = 1, 2,… ,N} from the nodes, and at from the auxiliary

node, the network operator takes the average of the node messages, then sums the
average with at, and obtains yt:

yt = at +
1
N

N∑
n=1

zt,n = at +
1
N

N∑
n=1

(p̃t,n + kt,n)

= at +
1
N

N∑
n=1

kt,n

⏟⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏟
0

+ 1
N

N∑
n=1

p̃t,n = 1
N

N∑
n=1

p̃t,n.

For distributed DP, cryptographic communication is used to ensure that only
an aggregate statistic over the network but nothing else about the individual
nodes can be learned by the network operator. Interested readers are referred to
Leontiadis et al. [2014] for details on cryptographic communication protocol.

Although a different cryptographic communication protocol can be designed
with secret key sharing without needing the auxiliary node [Leontiadis et al.,
2014], it requires coordination and peer-to-peer communication between nodes.
Moreover, such a protocol is not robust to node failures and dynamic networks
because it needs a redesign when any node joins or leaves.

8.4.1 Online Network Anomaly Detection

We start by analyzing the distribution of the aggregated statistic yt at the network
operator in both nominal and anomaly cases. Then, the proposed online network
anomaly detection method is explained.

Distribution of yt: The information aggregated at the network operator at time
t can be rewritten as

yt =
1
N

N∑
i=1

p̃t,n = 1
N

N∑
i=1

(pt,n + 𝑣t,n)

= 1
N

N∑
i=1

pt,n

⏟⏞⏟⏞⏟

pt

+ 1
N

N∑
i=1
𝑣t,n

⏟⏞⏟⏞⏟

𝑣t

= pt + 𝑣t, (8.1)

where 𝑣t ∼  (0, 𝜎2∕N).
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Recalling that pt,n ∼  [0, 1],∀n ∈ {1, 2,… ,N} for t < 𝜏 and assuming pt,n is
i.i.d. over time and space,2 the central limit theorem yields, asymptotically

pt ∼ 

(
0.5, 1

12N

)
, t < 𝜏. (8.2)

Since pt and 𝑣t are independent, we can write

yt ∼ 

(
0.5,

𝜎2 + 1∕12
N

)
, t < 𝜏. (8.3)

Moreover, we approximately have

yt ∼  (0.5, 𝜎2∕N), t < 𝜏, (8.4)

if 𝜎2 ≫ 1∕12.
If there is a network anomaly (i.e. for t ≥ 𝜏), anomalous nodes will observe more

frequent outliers, thus smaller p-values. This results in a decrease in the mean of
yt. Therefore, it can be argued that the mean of yt is 0.5 − 𝛾t for t ≥ 𝜏, where 𝛾t ≥ 0
denotes the unknown and possibly time-varying mean decrease. Furthermore,
when there is an anomaly, pt,n ∼  [0, 1] is not valid. The pdf of pt,n is unknown
for t ≥ 𝜏. However, pt,n is always between 0 and 1 and for a random variable taking
values in this range, its variance is upper bounded3 by 1∕4. Hence, for t ≥ 𝜏, pt,n
has a mean 𝜇t,n ∈ [0, 0.5] and a variance 𝜎2

t,n ∈ [0, 1∕4], ∀n ∈ {1, 2,… ,N}.
There are different versions of the central limit theorem, which prove con-

vergence to the normal distribution for nonidentical or dependent distributions
under certain conditions. In large-scale networks (i.e. large N), for t ≥ 𝜏, pt,n can
be considered as nearly independent but nonidentically distributed across the
nodes, where the Lindeberg central limit theorem [Billingsley, 1986, p. 369] can
be utilized. Given

s2
t,N ≜

N∑
n=1
𝜎2

t,n,

if for every 𝜀 > 0, the condition

lim
N→∞

1
s2

t,N

N∑
n=1

E[(pt,n − 𝜇t,n)2 11{|pt,n − 𝜇t,n| > 𝜀 st,N}] = 0 (8.5)

2 An i.i.d. pt,n stream can be achieved through local data processing. For instance, in Principal
Component Analysis, if the linear approximation fits the data well, the residual term mostly
corresponds to i.i.d. noise. Moreover, in large-scale networks, local data can be assumed
independent from the majority of other data observed in the network.
3 The variance of a x ∈ [0, 1] is written as 𝜎2

x ≜ 𝔼[x2] − (𝔼[x])2 ≤ 𝔼[x] − (𝔼[x])2, where the
inequality is because x2 ≤ x for x ∈ [0, 1]. Denoting m ≜ 𝔼[x], we have 𝜎2

x ≤ f (m) ≜ m − m2

where m ∈ [0, 1]. Finally, 𝜎2
x ≤ 1∕4 because the maximum value of the function f (m) is 1∕4 at

m = 1∕2.



198 8 Event-Triggered and Privacy-Preserving Anomaly Detection for Smart Environments

is satisfied, then

1
st,N

N∑
n=1

(pt,n − 𝜇t,n)

converges to the standard normal distribution  (0, 1). Under the condition
above, we can asymptotically write

pt =
1
N

N∑
n=1

pt,n ∼ 

(∑N
n=1 𝜇t,n

N
,

s2
t,N

N2

)
.

Since

0 ≤

N∑
n=1
𝜇t,n ≤ N∕2,

and

0 ≤ s2
t,N ≤ N∕4,

the mean of pt is between 0 and 0.5 and the variance of pt is between 0 and 1
4N

.
Hence, if 𝜎2 ≫ 1∕4, it approximately holds that, see Eq. (8.1),

yt = pt + 𝑣t ∼  (0.5 − 𝛾t, 𝜎
2∕N), t ≥ 𝜏. (8.6)

Note that the condition in Eq. (8.5) is satisfied in our case. The indicator in
Eq. (8.5) tends to 0 as N → ∞ since the term |pt,n − 𝜇t,n| is bounded because of
pt,n, 𝜇t,n ∈ [0, 1]. On the other hand, st,N → ∞ as N → ∞.

Finally, we can write

yt ∼

{
 (0.5, 𝜎2∕N), if t < 𝜏,
 (0.5 − 𝛾t, 𝜎

2∕N), if t ≥ 𝜏.
(8.7)

if 𝜎2 ≫ 1∕4 (see Eqs. (8.4) and (8.6)). In Eq. (8.7), we convert the original
high-dimensional problem to a simpler problem where the goal is to sequentially
detect a mean decrease in a univariate Gaussian data stream. This allows us to
use a parametric setting, as explained next, instead of the original nonparametric
setting.

Online anomaly detection: Let f y
0 and f y

1 denote the nominal and anoma-
lous pdfs of yt, respectively, and 𝜃 ≜ 𝜎∕

√
N. Then, f y

0 ∼  (0.5, 𝜃2) and
f y
1 ∼  (0.5 − 𝛾t, 𝜃

2), where f y
1 has an unknown and possibly time-varying parame-

ter 𝛾t, see Eq. (8.7). We next propose the following generalized CUSUM algorithm
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for online anomaly detection at the network operator:

Γ = inf

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

m ∈ ℕ∶ max
1≤j≤m

m∑
t=j

log
sup𝛾t≥𝜂

f y
1 (yt | 𝛾t)

f y
0 (yt)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝛽t

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
gm

≥ h

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭

, (8.8)

where 𝜂 denotes the minimum change of interest, indicating the detector sensi-
tivity, and h denotes the test threshold. Further, 𝛽t and gt denote the generalized
log-likelihood ratio (GLLR) and the decision statistic at time t, respectively, where
the decision statistic can be written in the following recursive form, see Basseville
and Nikiforov [1993, Sec. 2.2]:

gt = (gt−1 + 𝛽t)+. (8.9)

Furthermore, the GLLR 𝛽t can be computed as follows:

𝛽t =
1

2𝜃2 sup
𝛾t≥𝜂

(1 − 2yt)𝛾t − 𝛾2
t

=
⎧⎪⎨⎪⎩

1
2𝜃2 (0.5 − yt)2, if yt ≤ 0.5 − 𝜂,

1
2𝜃2 (1 − 2yt)𝜂 −

𝜂2

2𝜃2 , if yt > 0.5 − 𝜂.
(8.10)

Note that 𝜂 is only a detector parameter and not part of an anomaly model. The
only difference between the conventional CUSUM algorithm [Basseville and
Nikiforov, 1993, Sec. 2.2] and the proposed algorithm is the online estimation of 𝛾t.

Note that the proposed generalized CUSUM algorithm is not the same as the
well-known GLR test [Basseville and Nikiforov, 1993, Sec. 5.3]. We cannot write
the GLR test in a recursive form since it is assumed that the unknown pdf param-
eters are fixed over time. Whereas, the proposed algorithm can be written in a
recursive form since the unknown pdf parameter 𝛾t is assumed to be time-varying
because of unknown anomaly and it is estimated at each time t separately.

8.4.2 Experimental Results

We performed experiments over the N-BaIoT dataset [Meidan et al., 2018],
which is collected from a real IoT network consisting of nine devices. The data
xt,n ∈ ℝ115 at each node represents network traffic statistics at that node. Each
node employs the PCA-based local data processing method described in Kurt



200 8 Event-Triggered and Privacy-Preserving Anomaly Detection for Smart Environments

0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016 0.018 0.02

False alarm probability

0

1

2

3

4

5

6

A
ve

ra
ge

 d
et

ec
tio

n 
de

la
y

ε = ∞
ε = 9

ε = 6

ε = 4.9

ε = 4

ε = 3.46

ε = 3

Figure 8.5 ADD versus FAP of the proposed detector in case of a spam attack for various
DP levels.

et al. [2019b] and estimates the p-value pt,n of the residual of xt,n at each time t.
Each private number kt,n ∼  (0, 𝜎2). Figure 8.5 presents the ADD versus false
alarm probability (FAP) curves of the proposed detector for various levels of
DP. To obtain various DP levels, we vary the variance of the local Gaussian
perturbation noise 𝜎2. Figure 8.5 clearly shows the privacy-security tradeoff in
the network-wide anomaly detection problem, i.e. stronger privacy guarantees
(lower 𝜖) worsen the anomaly detection performance.

8.4.3 DP Techniques

Following the Gaussian perturbation results for DP Dwork and Roth [2014], how
much perturbation would be needed to prove DP for the proposed architecture
can be derived [Kurt et al., 2022]. Such a proof for the proposed distributed
scheme is facilitated by the parallel composition rule of the DP [McSherry,
2009], which states that if differentially private mechanisms are employed over
disjoint subsets of a database, then the overall mechanism also achieves DP.



8.4 Privacy-Preserving Anomaly Detection 201

Other perturbation techniques such as adding Laplacian noise [Dwork et al.,
2006b] can be also considered.

8.4.4 Anomaly Detection Performance

An asymptotic approximation and a lower bound for the FAP of the considered
solution scheme can be derived leveraging the asymptotic distribution of aggre-
gate p-value [Kurt et al., 2022]. Similarly, an asymptotic approximation and an
upper bound for the ADD of the considered solution scheme can be derived.
Since a CUSUM-type algorithm is employed in the network center, for the FAP
and ADD analysis of the considered solution scheme, Wald’s approximations and
Siegmund’s approximations as well as the theoretical upper and lower bounds
can be presented for the average run length (ARL) of the general CUSUM-type
algorithms in Basseville and Nikiforov [1993, Sec. 5.3]. Next, by using the derived
FAP and ADD approximations, the analytical privacy-security tradeoff in the
network-wide anomaly detection problem, which is controlled via the variance of
perturbation noise, can be shown as in Kurt et al. [2022].

8.4.5 Differentially Private Event-Triggered Anomaly Detection

The event-triggered sampling, described in Section 8.3, has practical advantages
in terms of preserving the privacy of local sensitive data as the node messages
are coded into specific event definitions. However, this cannot be considered
as a perfect privacy solution since releasing these messages may still lead to
side information leakages and reconstruction attacks [Dwork and Roth, 2014].
Therefore, we need additional techniques such as DP to ensure privacy. Since
in the event-triggered mechanism, a bit stream is transmitted from nodes,
transmitted bits can be randomized via flipping them with certain probability in
order to achieve DP. One can analyze the DP guarantees of the corresponding
network-wide anomaly detection scheme, as well as its effects on the anomaly
detection performance in terms of the FAP and ADD. The aim of this analysis is to
establish the analytical tradeoff between the DP level, controlled via the bit flip-
ping ratio, and the real-time anomaly detection performance. As shown in the bot-
tom figure of Figure 8.3, higher flip probabilities will cause larger distance between
nominal event sequences and in turn higher false alarm rates while at the same
time providing better DP guarantees. Probabilistically flipping the bits to be trans-
mitted from nodes corresponds to the stochastic encryption framework, which
is used as a physical layer security tool [Aysal and Barner, 2008; Soosahabi and
Naraghi-Pour, 2012; Soosahabi et al., 2014]. It is known that stochastic encryption
causes significant information loss to an eavesdropper while minimally reducing
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the network center’s inference performance. However, the privacy, in particular
DP, aspect of stochastic encryption has not been studied yet. The stochastic
encryption results [Aysal and Barner, 2008; Soosahabi and Naraghi-Pour, 2012;
Soosahabi et al., 2014] can be leveraged, together with theoretical tools of sequen-
tial change detection – in particular asymptotic ADD and FAP analysis – to study
the DP guarantees and analytical anomaly detection-DP tradeoff.
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9.1 Introduction

Over the years, wireless communication systems have evolved into the most
widely used framework for communication devices and networks. Many appli-
cations have benefited from wireless sensor networks (WSNs) such as military
surveillance, autonomous driving systems and smart-homes. One important
factor to consider when designing WSNs is the limited power supply. Reducing
energy consumption due to radio communication is key to sustainability and
longevity of WSNs since radio communication is the major component of WSNs
that consumes large amounts of energy.

Radio communications’ energy consumption is mainly determined by the
amount of data transmitted throughout the entire network. Therefore, by reduc-
ing the amount of data transmitted and optimizing communication processes,
energy-efficiency can be achieved. For example, it can be done through data
compression, power-saving modes, and efficient routing algorithms. In the
literature, some promising frameworks have been proposed for improving the
energy efficiency of the WSNs such as censoring, ordered transmission and
compressive sensing (e.g. [Baraniuk, 2007; Appadwedula et al., 2008; Blum and
Sadler, 2008; Candès and Wakin, 2008]). Energy efficiency is achieved by either
reducing the number of transmissions in the networks (e.g. censoring and ordered
transmission) or compressing the data sent by the sensors (e.g. quantization and
compressive sensing).

This chapter is concerned with the security aspects of one kind of promising
energy-efficient framework mentioned earlier, namely ordered transmission. In
ordered transmission-based (OT-based) schemes, energy efficiency is achieved
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by omitting transmission of less informative data. The security threat we are
particularly interested in is Byzantine attacks, which are one of the most sig-
nificant security threats faced by WSNs. In Byzantine attacks, a fraction of the
sensors within the network may be compromised and completely controlled by
adversaries, while the fusion center (FC) is unaware of the behavioral identity
of the malicious sensors. This can lead to the intentional transmission of cor-
rupted data that degrades system performance. A number of studies have been
conducted in the literature to design various defense mechanisms for mitigating
the effect of Byzantine attacks on the overall system performance. However,
energy-efficient OT-based frameworks make it more challenging to address
security issues since only a portion of sensors’ data is transmitted to the FC during
each decision-making interval. Since FC does not receive data from all the sensors
all the time, it cannot fully learn the behavior of all the sensors.

In this chapter, we conduct an investigation into the impact of Byzantine
attacks on several energy-efficient OT-based schemes used in WSNs. The
organization of this chapter is as follows. In Section 9.2, some existing threats
from Byzantine attacks on conventional wireless sensor networks are briefly
discussed, along with some possible defense mechanisms. Section 9.3 introduces
the conventional OT-based (COT-based) scheme and investigates the impact
of Byzantine attacks on this system. In Section 9.4, a communication-efficient
ordered transmission-based (CEOT-based) scheme is presented, and an analysis
of the effect of Byzantine attacks on the overall system is conducted. Section
9.5 compares the resilience of CEOT-based with COT-based systems. Finally, a
summary of the chapter and some challenges related to the security of energy
efficient OT-based schemes employed in WSNs are presented in Section 9.6.

9.2 Byzantine Attack Model

Byzantine attack is a type of attack that occurs at the physical layer. This type
of attack can be traced back to the issue of Byzantine generals, first introduced
by Pease et al. [1982], where traitors attempted to mislead other loyal generals
by providing false information. In WSNs, this term specifically refers to the mali-
cious behaviors that occur within WSNs when certain sensors are compromised
and transmit false data within the network. There are different types of Byzantine
attacks such as data modification attack, data omission attack, and delayed attack.
Malicious nodes can selectively delay data (delayed attack), drop data (data omis-
sion attack), or alter data packets directly (data modification attack) to manipulate
the network.

In the existing literature, there have been studies of distributed WSNs under
Byzantine attacks (e.g. [Kailkhura et al., 2018; Vempaty et al., 2018; Quan et al.,
2022b]). The interactions between Byzantines and the WSNs can be viewed as
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games between attackers and the detection systems. Byzantines aim to undermine
the integrity of data transmitted, thereby lowering the reliability of wireless sensor
networks. Correspondingly, the FC can enhance the reliability of the network by
identifying the Byzantines and making suitable use of information coming from
Byzantines for mitigation purposes. Hence, strategic Byzantines attackers strive
to maximize their attack gains while attempting to avoid detection by the defense
system.

The level of effort required for an effective attack varies depending on the data
fusion system architecture. In centralized fusion, the system can better evaluate
the behavior of all the sensors so that the attacks can be mitigated, especially
when the majority of nodes are honest and the FC is trustworthy. However, in
decentralized fusion, each sensor can only communicate with its neighbors to
gather additional information regarding the phenomenon of interest before mak-
ing a decision. This decentralized approach makes the system more susceptible
to attacks since false data can be stealthily incorporated into the decisions of
neighboring nodes and diffused throughout the network.

9.2.1 Typical Attack Model in WSNs

There are several factors that can be used to classify Byzantine attacks in WSNs.
One such factor is the availability of additional information besides the sensing
results at the Byzantine nodes. If no extra information is available, the attacks are
referred to as independent attacks, meaning that the Byzantine nodes can only rely
on their own sensing capabilities. On the other hand, if the attacks involve the
acquisition of extra information by the Byzantine nodes, such as the current sens-
ing results of other malicious nodes, fusion rules, and defense strategies, they are
referred to as dependent attacks. The exchange of information in dependent attacks
allows malicious nodes to increase their accuracy in sensing and the success rate
of their attacks, making their collusion more effective. One approach to defend
against these types of attacks is to use statistical methods to detect and identify
malicious nodes that are demonstrating anomalous behavior [Quan et al., 2022c].
Another factor is the manner in which the attacks are executed. If the attacks are
launched with a certain probability, they are referred to as probabilistic attacks.
Defense algorithms for these types of attacks usually identify attackers by analyz-
ing the consistency of their attack behavior over time, such as reputation-based
schemes (e.g. [Quan et al., 2022c]) and cluster-based schemes (e.g. [Chen and
Wang, 2019]). Conversely, if the attacks are launched based on specific conditions,
such as when their posterior probability of being a malicious node exceeds a cer-
tain threshold, they are referred to as non-probabilistic attacks. These attacks are
much harder to model compared to probabilistic attacks and can be very difficult
to defend against, as the Byzantine nodes are intentionally trying to appear normal
while causing disruptions.
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9.2.2 Existing Defense Schemes

There are a number of studies exploring various defense mechanisms in the
literature aimed at mitigating the impact of Byzantine attacks on the overall
system performance. They either directly identify and isolate Byzantine attackers
or design the system parameters to mitigate the effects of attacks on the system.
There are many promising methods for dealing with Byzantine attacks in net-
works, such as game-theoretic techniques [Liu et al., 2020], reputation-based
methods [Nadendla et al., 2014; Quan et al., 2022c], and machine learning
techniques [Yang et al., 2020]. Several consensus-based algorithms have been
used in decentralized fusion to improve their robustness under attack. Efforts
have been made to exclude nodes with significant deviations from consensus (e.g.
[Liu et al., 2012]) and to design network parameters to mitigate the impact of data
falsification attacks (e.g. [Kailkhura et al., 2017; Mustafa et al., 2021]).

The previously discussed works have made strides in improving the resilience
of systems against Byzantine attacks, however, they still have limitations in
detecting distributed attacks when a large number of sensor nodes are attacked.
Some works, such as Hashlamoun et al. [2017, 2018] and Zhang et al. [2018],
have successfully reduced the impact of Byzantine attacks on wireless sensor
networks (WSNs) even when the majority of sensors are malicious. There are
also some works that have used the idea of quickest change detection to detect
the presence of anomalous measurements due to the malicious sensors in the
networks. A model of quickest change detection problems was proposed to detect
the presence of Byzantines. The malicious behavior of Byzantines is characterized
by distributions before and after the change time (e.g. [Fellouris et al., 2017;
Huang et al., 2021]). Aside from works that deal with performance analysis and
robust design of networks with fixed sample sizes, there are also studies that deal
with performance analysis and robust design of networks with unknown sample
sizes, such as sequential hypothesis testing (e.g. [Wu et al., 2018; Li et al., 2021]).

In the literature, there appears to be a large body of literature on performance
analysis and robust design of networks that utilize data from all the sensors to
make final decisions under Byzantine attacks, while the literature on performance
analysis and the robust design of energy-efficient networks with an unknown
number of sensors still needs more effort on methods, such as censoring-based
schemes, ordered transmission-based schemes, and sleep scheduling algorithms.
The reduced number of sensors needed to reach a final decision appears to meet
the increasing demand for low-energy consumption and long-lasting WSNs for a
variety of applications. Compressed sensing is also an energy-efficient framework
in which data sent by the sensors is compressed using quantization and com-
pressed sensing. These energy-efficient frameworks are still under investigation
in terms of their robustness and their robust design in the context of error-prone
environments and under attacks. In the rest of this chapter, we will focus on one
promising framework which is ordered transmission-based framework.
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9.3 COT-Based System

The COT-based scheme was initially introduced by Blum and Sadler [2008].
In this scheme, the FC receives the log-likelihood ratios (LLRs) instead of raw
data from only a subset of sensors. This approach has been utilized in a wide
range of detection problems to enhance energy efficiency while preserving the
detection performance of networks. For instance, Rawas et al. [2011] applied
the OT-based framework to the detection of noncoherent signals. Hesham et al.
[2012] applied the OT framework to sequential detection problems. Chen et al.
[2020a, 2021] applied the OT framework to quickest change detection problem.
Gupta et al. [2020] applied the OT framework to energy-harvesting systems.
In addition, researchers have explored the use of the OT-based framework in
various applications beyond detection tasks for transmission-saving purposes. For
instance, Chen et al. [2020b] proposed a scheme that applies the idea of ordered
transmission to the gradient descent approach. This new scheme guarantees the
same order of convergence rate but with fewer transmissions. Yang et al. [2019]
applied the concept of ordered transmission to the discretized estimation problem
and demonstrated its ability to significantly decrease latency without deteriorat-
ing estimation accuracy. The above literature demonstrates the versatility and
efficiency of the OT-based framework in various applications.

In this section, the COT-based system proposed by Blum and Sadler [2008] is
discussed. An evaluation of such a system under Byzantine attacks, as well as a
discussion of possible defense strategies, will be conducted.

9.3.1 System Model of COT-Based System

To elucidate the basic concepts of COT schemes, a binary hypothesis testing
problem is considered. The observations at the N sensors in the system indicate
either the presence (1) or absence (0) of a phenomenon of interest (PoI).
In COT-based frameworks, only a subset of sensors needs to transmit their
LLRs to the FC. Once the FC gathers sufficient observations for a final
decision of desired quality, it broadcasts a stop signal to halt further sensor
transmissions for the current decision interval. Sensors that have not yet trans-
mitted reset their timers for the next decision interval upon receiving the stop
signal.

For sensor i ∈ {1, 2,… ,N}, its observation yi is modeled as

yi =
{

ni, under 0,

s + ni, under 1,
(9.1)

where ni is the Gaussian noise with zero mean and variance 𝜎2 and s is the signal
strength at each sensor. ni and s are assumed to be independent, and all the
observations are assumed to be independent and identically distributed (i.i.d)
conditioned on the hypotheses. Each sensor i ∈ {1, 2,… ,N} computes its LLR,
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which is given by Li = log
(

fYi
( yi|1)

fYi
( yi|0)

)
, and sends it to the FC. Here, fYi

( yi|h) is

the probability density function (PDF) of yi given hypothesis h, for h = 0, 1. The
sensors send their LLRs to the FC according to the magnitude of their respective
LLRs.1 Based on this setup, the optimal decision rule is expressed as [Blum and
Sadler, 2008]{∑k

i=1 L[i] > 𝜉 + (N − k)|L[k]|, decide 1,∑k
i=1 L[i] < 𝜉 − (N − k)|L[k]|, decide 0,

(9.2)

where 𝜉 = log
(
𝜋0
𝜋1

)
is the threshold used by the FC. L[i] is the ith largest LLR and

𝜋h = P(h) is the prior probabilities of hypothesis h for h ∈ {0, 1}.

9.3.1.1 Attack Model
One possible security threat for an OT-based framework in an error-prone
environment is the order altering Byzantine attack (OA-Byzantine attack) [Quan
et al., 2022a]. If attackers launch OA-Byzantine attacks, they can manipulate
both the order and the data in the binary hypothesis testing problem. We assume
that every sensor in the network has a probability 𝛼 of being OA-Byzantine (B)
and a probability 1 − 𝛼 of being honest (H). Additionally, OA-Byzantine sensors
are assumed to possess perfect knowledge of the underlying true hypothesis.2 If
sensor i ∈ {1, 2,… ,N} is OA-Byzantine, the falsified observation is expressed as

ỹi =
{

s + ni − D, under 1,

ni + D, under 0,
(9.3)

where D ∈ ℝ+ is the attack strength. The above attack strategy involves generating
falsified observations from an altered distribution, achieved by shifting the mean
of the original distribution, and it is commonly utilized and discussed in the litera-
ture [Zhang et al., 2014; Kailkhura et al., 2017]. If sensor i is honest, its observation
yi as given in Eq. (9.1).

9.3.2 Performance Analysis

The effect of OA-Byzantine sensors on the FC’s performance can be evaluated from
two perspectives: the system’s detection performance and the average percentage
of transmission savings.

1 Specifically, if |L[1]| > |L[2]| > · · · > |L[N]|, then the sensor with the largest absolute LLR
value, L[1], transmits first, followed by L[2], and so forth.
2 Although difficult to achieve in practice, considering this scenario is still useful as it illustrates
the worst-case impact of OA-Byzantines.
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9.3.2.1 Detection Performance
The following lemma stated in Quan et al. [2022a] always holds for COT-based
systems:

Lemma 9.1 Under the optimum Bayesian decision rule, the detection perfor-
mance remains the same whether or not the system uses the COT-based scheme
in the presence of OA-Byzantine sensors.

Lemma 9.1 establishes that the COT-based system can achieve equivalent
detection performance compared to the unordered system, irrespective of the
presence of OA-Byzantine sensors. Hence, to assess the detection performance
of the COT-based system under OA-Byzantine attacks, we analyze the detection
performance of the corresponding unordered distributed system. According to
Quan et al. [2022a], the detection probability PFC

d and false alarm probability PFC
f

at the FC of an OT-based system are given as

PFC
d =

2N∑
t=1

(1 − 𝛼)N−bt𝛼bt Q

(
𝜉 − (𝜇1)At√

N𝛽

)
(9.4)

and

PFC
f =

2N∑
t=1

(1 − 𝛼)N−bt𝛼bt Q

(
𝜉 − (𝜇0)At√

N𝛽

)
, (9.5)

respectively, where Q(.) is the tail distribution function of the standard normal
distribution. Here, 𝛽 = s2

𝜎2 and At is the tth subset of the set {1,… ,N}. The cardi-
nality of set At is denoted by bt, i.e. bt = |At|, and (𝜇h)At

= 𝜇h|At| + 𝜂h(N − |At|) for
h = 0, 1, where𝜇1 = −𝜇0 = s2

2𝜎2 , and 𝜂0 = −𝜂1 = s2−2Ds
2𝜎2 . The optimal attack strength

D∗ that attackers can adopt is given by [Quan et al., 2022a]

D∗ = s
2𝛼
, (9.6)

which indicates the attack strategy to blind the FC, i.e. achieving a probability of
error of 1/2 so that the FC does not derive any information from the observations.

9.3.2.2 Average Number of Transmissions Saved Under OA-Byzantine Attacks
In the COT-based system, the average number of transmissions (ANT) saved Nt
under OA-Byzantine attacks can be calculated as

Nt =
N∑

k=1
𝜋1 Pr (𝓁 ≥ k|1) + 𝜋0 Pr (𝓁 ≥ k|0), (9.7)

where 𝓁 is the minimum number of transmissions required to make a final deci-
sion without any loss of detection performance. Hence, to calculate Nt, we need to
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first calculate Pr (𝓁 ≥ k|h) for h = 0, 1. According to Quan et al. [2022a], we have

Pr (𝓁 ≥ k|h) = ELk−1

[
F|Lk−1|(Lk−1|h)N−k+1𝟏{}

N!
(N − k + 1)!

]
, (9.8)

where F|L|(li|h) = 𝛼
(

Q
(
−li−𝜂h√

𝛽

)
− Q

(
li−𝜂h√
𝛽

))
+ (1 − 𝛼)

(
Q
(
−li−𝜇h√

𝛽

)
− Q

(
li−𝜇h√

𝛽

))
is the cumulative distribution function (CDF) of |Li| for h = 0, 1, and 𝟏{}
is an indicator function that is equal to 1 if Lk−1 = {L1,L2,… ,Lk−1} lies in
the region 𝟏{} and equal to 0 otherwise. Here,  is a hyperplane with k − 1
dimensions formed by the intersection of three hyperplanes,  =  ∩  ∩,
where  =

{
Lk−1 ∶

∑k−1
i=1 Li ≤ 𝜉 + (N − k + 1)|Lk−1|},  = {Lk−1∶

∑k−1
i=1 Li ≥ 𝜉 −

(N − k + 1)|Lk−1|}, and  =
{

Lk−1∶|L1|> |L2|> · · ·> |Lk−1|}. The set  consists
of Lk−1 for which the FC is unable to determine hypothesis 1. Similarly, the set
 consists of Lk−1 for which the FC is unable to determine hypothesis 0. The set
 consists of Lk−1 such that L1,L2,… ,Lk−1 are ordered by magnitude.

For a given k, (9.8) can be numerically evaluated using the Monte Carlo
approach. However, when the number of sensors N increases, the Monte Carlo
approach requires a significant increase in the number of samples to accurately
evaluate (9.8). It can become quite time-consuming to obtain the ANT saved
under attack with a substantial number of sensors deployed in the network.
While, for sufficiently large values of N, the upper bound (UB) (given in (9.9))
and lower bound (LB) (given in (9.10)) for the ANT saved can be obtained [Quan
et al., 2022a].

Ns
U
=

N−1∑
k=1

1∑
h=0

𝜋h

[
Pr

(|L[k]| ≤ qU − 𝜉
N − k

|h

)
+ Pr

(|L[k]| ≤ 𝜉 − qL

N − k
|h

)
−Pr

(|L[k]| ≤ min
(qU − 𝜉

N − k
,
𝜉 − qL

N − k

) |h

)]
(9.9)

Ns
L
=

N−1∑
k=1

1∑
h=0

𝜋h

[
Pr

(|L[k]| < qL − 𝜉
(N − k)

|h

)
+ Pr

(|L[k]| < 𝜉 − qU

(N − k)
|h

)]
(9.10)

qL and qU in (9.9) and (9.10) are given as qL = −
[∑

(ai − k∕N)2N𝜁2
h

] 1
2 + k𝛿h

and qU =
[∑

(ai − k∕N)2N𝜁2
h

] 1
2 + k𝛿h, respectively. Here, the value of ai for

i = 1, 2,… ,N changes with the value of k, that is ai = 1 if i ≤ k and ai = 0 if i > k.
𝛿h and 𝜁2

h are given as 𝛿h = 𝛼𝜂h + (1 − 𝛼)𝜇h and 𝜁2
h = 𝛽 + 𝛼𝜂2

h + (1 − 𝛼)𝜇2
h − 𝛿

2
h,

respectively. Since the pdf of f|L[k]|(l[k]|h) is

f|L[k]|(l[k]|h) =

{
fL[k]

(l[k]|h) − fL[k]
(−l[k]|h), if l[k] ≥ 0,

0, if l[k] < 0,
(9.11)
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where fL[k]
(l[k]|h) = NfL(l[k]|h)

(
N−1
k−1

)
FL(l[k]|h)(N−k)(1 − FL(l[k]|h))(k−1) and

fL(li|h) = 𝛼 (𝜂h, 𝛽) + (1 − 𝛼) (𝜇h, 𝛽), we are able to compute Pr
(|L[k]|<W |h

)
for W ∈

{
qU−𝜉
N−k

,
𝜉−qL
N−k

,min
(

qU−𝜉
N−k

,
𝜉−qL
N−k

)
,

qL−𝜉
N−k

,
𝜉−qU
N−k

}
in (9.10) and (9.9), which is

given as Pr
(|L[k]| < E|h

)
= ∫

E
−E f|L[k]|(l[k]|h)dl[k].

9.4 CEOT-Based System

In this section, we discuss another OT-based framework, called CEOT-based
scheme. It was first proposed by Sriranga et al. [2018] where sensors transmit
binary decisions instead of LLRs to the FC. The performance of the CEOT-based
system under two types of Byzantine sensors was evaluated: decision-falsifying
(DF-Byzantine) sensors, which perform pure decision-flipping, and OA-Byzantine
sensors, which not only flip decisions but also change the transmission order.

To demonstrate the basic concepts of CEOT-based schemes, we again consider
a binary hypothesis testing problem. Based on the local observations {yi}N

i=1,
each sensor i ∈ {1,… ,N} makes a binary decision 𝑣i ∈ {0, 1} regarding the true

hypothesis using the LLR test Li

𝑣i=1
≷
𝑣i=0

log
(
𝜋0
𝜋1

)
. Notably, sensor transmissions

remain ordered according to the magnitude of their LLRs. Specifically, if the
magnitudes of the LLRs are sorted as |L[1]| > |L[2]| > · · · > |L[N]|, the sensors
send their local binary decisions to the FC in the order of 𝑣[1], 𝑣[2],… , 𝑣[N]. Note
that 𝑣[k] is the kth transmitted local decision which comes from the sensor with
the kth largest LLR magnitude.

Thus, the optimal decision rule is given by [Sriranga et al., 2018]{∑k
i=1 𝑣[i] ≥ T, decide 1,∑k
i=1 𝑣[i] < T − (N − k), decide 0,

(9.12)

which follows the T out of N counting rule.

9.4.1 Attack Model

Two possible types of security threats are considered in this framework:
DF-Byzantine attacks and OA-Byzantine attacks. In the former, the Byzantine
sensors perform pure decision flipping, while in the latter, the sensors not only
alter decisions but also alter the sequence of the transmitted decisions. Each
sensor is assumed to have a probability 𝛼 of being a Byzantine sensor, and the
Byzantines are assumed to possess perfect knowledge of the underlying true
hypothesis.
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● DF-Byzantine attacks For a DF-Byzantine sensor i ∈ {1, 2,… ,N}, we have{
𝑣i = 1 − xi, with probability 𝛼p,
𝑣i = xi, with probability 1 − 𝛼p,

(9.13)

where xi represents the actual local decision made by sensor i, 𝑣i represents the
local decision transmitted to the FC by sensor i and p is the probability that the
sensor i flips its local decisions. If sensor i is honest, xi is the same as 𝑣i.

● OA-Byzantine attack Attackers falsify data in the same way as stated in
Section 9.3.1.

9.4.2 CEOT-Based System with DF-Byzantines

The performance of the CEOT-based system with DF-Byzantine sensors is
analyzed in terms of the detection performance and the number of transmissions
saved in the network. Next, we will first discuss the detection performance under
DF-Byzantine attacks, and subsequently evaluate and analyze the number of
transmissions saved.

9.4.2.1 Detection Performance
The following lemma stated in Quan et al. [2023] always holds for the CEOT-based
scheme under DF-Byzantine attacks:

Lemma 9.2 When the FC follows the Bayesian decision rule, the detection per-
formance of systems with and without the use of the CEOT-based scheme is the
same in the presence of data falsification attacks.

The lemma shows that the CEOT-based system can achieve equivalent detection
performance under DF-Byzantine attacks as an unordered system. Thus, the detec-
tion performance of the CEOT-based system under DF-Byzantine attacks can be
evaluated by analyzing the detection performance of the corresponding unordered
system. The detection probability PFC

d,CEOT and the false alarm probability PFC
f ,CEOT

of the FC are respectively given below as (see [Quan et al., 2023])

PFC
d,CEOT =

N∑
i=T+1

(N
i

)
Q

(
𝜉 − 𝜇1√

𝛽

)i[
1 − Q

(
𝜉 − 𝜇1√

𝛽

)]N−i

(9.14)

and

PFC
f ,CEOT =

N∑
i=T+1

(N
i

)
Q

(
𝜉 − 𝜇0√

𝛽

)i[
1 − Q

(
𝜉 − 𝜇0√

𝛽

)]N−i

. (9.15)

The optimal threshold T∗ that can be utilized by the FC is given by

T∗ =
[

log
(
𝜋0

𝜋1

)
+ N log

(1 − 𝜋̃1,0

1 − 𝜋̃1,1

)]
∕ log

(
𝜋̃1,1(1 − 𝜋̃1,0)
𝜋̃1,0(1 − 𝜋̃1,1)

)
. (9.16)
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9.4.2.2 Average Number of Transmissions Saved Under DF-Byzantine Attacks
Let 𝓁L = arg min

1≤k≤N

{∑k
i=1 𝑣[i] ≥ T

}
and 𝓁U = arg min

1≤k≤N

{∑k
i=1 𝑣[i] < T − (N − k)

}
define the minimum number of transmissions required to decide 1 and 0,
respectively, under DF-Byzantine attacks. Then, the ANT saved when the FC
decides 1 is expressed as [Quan et al., 2023]

Ns,1(𝛽) = E(N − 𝓁L) =
N∑

k=1
(N − k)P(𝓁L = k) (9.17a)

≥

⌈T⌉+𝛽∑
k=1

(N − k)P(𝓁L = k) (9.17b)

≥ (N − ⌈T⌉ − 𝛽)P(𝓁L ≤ ⌈T⌉ + 𝛽), (9.17c)

where ⌈T⌉ denotes the ceiling function, which rounds up T to the closest
integer that is greater than or equal to T. In going from (9.17a) to (9.17b),
some positive terms are dropped. To tighten the LB, an appropriate 𝛽 should be
selected since the difference between the actual ANT saved and its LB depends
on the omitted terms. According to the definition of 𝓁L, P(𝓁L ≤ ⌈T⌉ + 𝛽) in
(9.17c) can be expressed as P(𝓁L ≤ ⌈T⌉ + 𝛽) = Pr

(∑⌈T⌉+𝛽
k=1 𝑣[k] ≥ T

)
. Further-

more, (9.17c) can be lower bounded by Ns,1(𝛽)L = (N − ⌈T⌉ − 𝛽)P(∑⌈T⌉+𝛽
k=1 𝑣[k] ≥

T|∑⌈T⌉+𝛽
i=1 𝑣[i] ≥ T,1)𝜋1 due to the fact that any extra condition added will

maintain or reduce the probability. When a sufficiently large signal is considered,
P
(∑⌈T⌉+𝛽

k= 1 𝑣[k] ≥ T|∑⌈T⌉+𝛽
i= 1 𝑣[i] ≥ T,1

)
=
∑𝛽

i=0

(⌈T⌉+𝛽
i

)
(𝛼p)i(1 − 𝛼p)⌈T⌉+𝛽−i as

given in Quan et al. [2023]. Similarly, for an adequately large signal, the ANT
saved when the FC decides 0 is expressed as

Ns,2(𝛽) ≥ (⌈T⌉ − 𝛽)P(N−⌈T⌉+𝛽∑
k=1

𝑣[k] < 𝜅|N−⌈T⌉+𝛽∑
i=1

𝑣[i] < T,0

)
𝜋0 = Ns,2(𝛽)L,

(9.18)

where ⌊T⌋ denotes the floor function, which rounds down T to the nearest
integer that is less than or equal to it. We can easily obtain P

(∑N−⌈T⌉+𝛽
k=1 𝑣[k] <

𝜅|∑N−⌈T⌉+𝛽
i=1 𝑣[i] < T,0

)
=
∑⌊T⌋−⌈T⌉+𝛽

i=0

(
N−⌈T⌉+𝛽

i

)
(𝛼p)i(1 − 𝛼p)N−⌈T⌉+𝛽−i, where

𝜅 = T − (⌈T⌉ − 𝛽). Hence, a tight LB can be found by solving the following
optimization problem:

max
𝜷

Ns,1(𝛽)L + Ns,2(𝛽)L (9.19a)

s.t. 0 ≤ 𝛽 ≤ min (N − ⌈T⌉, ⌈T⌉) (9.19b)

𝛽 ∈ ℤ, (9.19c)

where ℤ denotes the set of integers. The constraint in (9.19b) arises because the
upper index of the summations in the expressions for Ns,1(𝛽)L and Ns,2(𝛽)L must
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be less than or equal to N. Even though the optimization problem in (9.19) is a
non-convex optimization problem, the optimal solution can be obtained by ana-
lyzing the property of its objective function and the corresponding discussion can
be found in Quan et al. [2023].

9.4.3 CEOT-Based System with OA-Byzantines

9.4.3.1 Detection Performance
Similar to the case of DF-Byzantine system, the CEOT-based system achieves
the same detection performance as the corresponding unordered system
under OA-Byzantine attacks. To evaluate the detection performance of
the CEOT-based system under OA-Byzantine attacks, we can analyze the
detection performance of the corresponding unordered distributed system.
According to Quan et al. [2022a], the detection probability PFC

d,CEOT and the
false alarm probability PFC

f ,CEOT of a CEOT-based system are, respectively,

given by PFC
d,CEOT =

∑N
i=T

(
N
i

)
𝜋i

1,1𝜋
N−i
0,1 and PFC

f ,CEOT =
∑N

i=T

(
N
i

)
𝜋i

1,0𝜋
N−i
0,0 , where

𝜋1,h = P(𝑣i = 1|h) = 𝛼Q
(
𝜉−𝜂h√
𝛽

)
+ (1 − 𝛼)Q

(
𝜉−𝜇h√
𝛽

)
.

9.4.3.2 Average Number of Transmissions Saved Under OA-Byzantine Attacks
Let Ns,CEOT denote the ANT saved in the CEOT-based scheme given as

Ns,CEOT = E(N − 𝓁) =
N∑

k=1
(N − k)Pr (𝓁 = k) =

N−1∑
k=1

Pr (𝓁 ≤ k). (9.20)

Here, 𝓁 is again the minimum number of transmissions required to reach a
final decision with desired accuracy. Since computing Pr (𝓁 ≤ k) is intractable, we
instead derive the UB and LB of Ns,CEOT . Let Λ =

∑N
i=1 𝑣i denote the global statistic

of the distributed unordered system. Note that the final decisions of the system,
whether ordered or unordered, remain the same under OA-Byzantine attacks.
Consequently, Λ < T indicates that there exists an 𝓁 such that

∑𝓁
i=1 𝑣[i] < T −

(N − 𝓁), while Λ ≥ T indicates that there exists an 𝓁 such that
∑𝓁

i=1 𝑣[i] ≥ T.
To determine the LB and UB of Ns,CEOT , we consider the worst-case and best-case
scenarios, respectively. They are shown as the following [Quan et al., 2022a]:

● The worst case: To determine the maximum𝓁 required to reach a final decision
based on a set of local decisions {𝑣i}N

i=1. In this case, there are two possibilities
that need to be considered: (i) Λ < T; (ii)Λ ≥ T. Given Λ < T, the worst-case
scenario would be if the local decisions are ordered in descending magnitude, i.e.

|r[1]| ≥ |r[2]| · · · ≥ |r[N]|, (9.21)
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where r[k] ∈ {0, 1} is the kth largest local decision.3 Similarly, given Λ ≥ T, the
worst-case scenario would occur if

|r(1)| ≤ |r(2)| · · · ≤ |r(N)|, (9.22)

where z(k) ∈ {0, 1} is the kth smallest local decision. Note that r[k] and z(k) are
not the same as 𝑣[k]. The values 𝑣[1], 𝑣[2],… , 𝑣[N] are ordered by the magnitude
of their corresponding LLRs, while r[1], r[2],… , r[N] (or r(1),… , r(N)) are ordered
by the magnitude of local decisions.

● The best case: To determine the minimum 𝓁 required to reach a final decision
based on a set of local decisions {𝑣i}N

i=1. We still need to consider two possibili-
ties: (i) Λ < T; (ii)Λ ≥ T. The best-case scenario when Λ < T would occur if the
magnitude of local decisions are ordered as (9.22). The best case given Λ ≥ T
would occur if the magnitude of local decisions are ordered as (9.21).

Hence, the UB N
U
s,CEOT and the LB N

L
s,CEOT are given by [Quan et al., 2022a]

N
U
s,CEOT =

1∑
h=0

N−1∑
k=1
𝜋h

[
P
(
𝓁0 ≤ k|Λ ≥ T,h

)
P(Λ ≥ T|h)

+ P
(
𝓁1 ≤ k|Λ < T,h

)
P(Λ < T|h)

]
, (9.23)

N
L
s,CEOT =

1∑
h=0

N−1∑
k=1
𝜋h

[
P
(
𝓁1 ≤ k|Λ ≥ T,h

)
P(Λ ≥ T|h)

+ P
(
𝓁0 ≤ k|Λ < T,h

)
P(Λ < T|h)

]
, (9.24)

where P(Λ ≥ T|h) =
∑N

i=T

(
N
i

)
𝜋i

1,h𝜋
N−i
0,h , P(Λ < T|h) = 1 − P(Λ ≥ T|h), and

P
(
𝓁0 ≤ k|Λ ≥ T,h

)
=

N−T∑
i=0

(N
i

)
𝜋i

0,h𝜋
N−i
1,h , (9.25)

P
(
𝓁1 ≤ k|Λ ≥ T,h

)
=

min (N−T,k−T)∑
i=0

(N
i

)
𝜋i

0,h𝜋
N−i
1,h , (9.26)

when k ≥ T, and

P
(
𝓁1 ≤ k|Λ < T,h

)
=

T−1∑
i=0

(N
i

)
𝜋i

1,h𝜋
N−i
0,h , (9.27)

P
(
𝓁0 ≤ k|Λ < T,h

)
=

min (T−1,k−(N−T+1))∑
i=0

(N
i

)
𝜋i

1,h𝜋
N−i
0,h , (9.28)

3 Λ < T implies that the total number of “1”s is less than T.
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when k > N − T. Here, 𝓁0 and 𝓁1 represent the minimum number of transmis-
sions required to reach a final decision for local decisions ordered in descending
and ascending order, respectively.

9.5 Comparison of COT-Based and CEOT-Based
Systems Under Attack

In this section, we compare the performance of COT-based and CEOT-based
systems under OA-Byzantine and DF-Byzantine attacks. Some simulation
results regarding the performance of the OT-based systems under attacks are
presented below.

9.5.1 Effect of OA-Byzantine Attacks on the COT-Based
and CEOT-Based Systems

Figure 9.1 demonstrates that, for the same attack parameters, the CEOT-based sys-
tem demonstrates greater resilience to OA-Byzantine attacks than the COT-based
system with respect to error probabilities. It shows that the quantization proce-
dure in OT-based frameworks improves the robustness of OT-based frameworks.
Figure 9.2 displays the nature of the average percentage of transmission savings
with respect to the attack parameter D. Initially, the average percentage of trans-
mission savings decreases as D increases. However, with further increases in D, the
FC begins to make more erroneous decisions, resulting in a decrease in the num-
ber of transmissions needed to reach a final decision and an increase in savings.
We can observe the existence of a minimum average percentage of transmission
savings, which corresponds to the optimal attack strength D∗ obtained from (9.6).
The LB obtained from (9.10) and the UB obtained from (9.9) are also shown in
Figure 9.2, and they track the changes in the actual saved ANT. The LB performs
better in tracking changes compared to the UB, allowing us to infer the optimal
attack strategy for the attacker, i.e. the value of D that the attacker will use to cause
the most damage to the system. The UB, on the other hand, offers insights into the
maximum number of transmissions saved on average in the network and alerts us
to the presence of outliers.4 These trends give us an insight into how to improve
the system’s robustness. Figure 9.3 shows that OA-Byzantine sensors can have less
impact on the final decision-making in the CEOT-based system. As D increases
sufficiently, Byzantine sensors are most likely to provide the first several local deci-
sions received by the FC. This scenario represents the worst-case performance of
the system. As D continues to increase, the influence of Byzantine sensors on the
number of transmissions saved in the network does not increase further, due to

4 For example, if the ANT saved exceeds the maximum value of the UB, it indicates potential
outliers where data significantly deviates from the actual, suggesting attackers are employing an
excessively large value of D.
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Figure 9.1 Pe as a function of D in the COT-based system and the CEOT-based system
when N = 300, 𝜎2 = 1, s = 3 and 𝜋1 = 𝜋0 = 0.5. Source: Adapted from Quan et al. [2022a].
Please see the online version for the colored version of the figure.
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the quantization of LLRs, thereby mitigating their effects on the system. By com-
paring Figure 9.3a,b, we can also observe that the LB obtained in (9.24) becomes
tighter as the signal strength s increases.

9.5.2 Effect of DF-Byzantine Attacks on the CEOT-Based System

Figure 9.4 shows that the optimal threshold T∗ obtained from (9.16) results
in the lowest possible error probability for the system.5 Additionally, it can be

5 The threshold closest to the optimal threshold T∗ is 49.5 in Figure 9.4 when 𝜋1 = 0.5 and
𝜋1 = 0.3.
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observed that both the CEOT-based and unordered systems exhibit identical error
probabilities for the given parameter values. This finding aligns with Lemma 9.2.
In Figure 9.5, we can observe that a relatively tight UB is obtained compared with
the UB obtained in the past work [Sriranga et al., 2018] for the average fraction
of the number of transmissions required in the CEOT-based system. The effect of
different values of prior probability and T on the performance of the CEOT-based
system is shown in Figure 9.6. From Figure 9.6, it is evident that as T approaches
T∗ (approximately N∕2), the system tends to require the maximum number of
transmissions in the network when both hypotheses have prior probabilities of
0.5. However, variations in the prior probabilities can influence the optimal T
that minimizes transmissions. A smaller T increases the transmissions needed
for deciding 0 but reduces those for deciding 1. With a lower 𝜋1 < 0.5, the
likelihood of the FC deciding 0 increases. Consequently, a system using T = 29.5
requires more transmissions compared to one using T = 49.5, given 𝜋1 = 0.3.
Thus, the ANT needed is related to the prior probabilities of hypotheses in the
system. According to Figures 9.4 and 9.6, it’s possible to save transmissions
while ensuring the quality of decisions by designing an appropriate threshold
at the FC.
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9.5.3 Discussion

In this section, we presented simulation results illustrating the impact of
OA-Byzantine attacks on both the COT-based and CEOT-based systems, as well
as the effect of DF-Byzantine attacks specifically on the performance of the
CEOT-based system. These performance comparisons provide valuable insights
into the design of robust OT-based systems. For example, CEOT-based systems
exhibit greater resilience to both OA-Byzantine and DF-Byzantine attacks com-
pared to COT-based systems. By designing appropriate thresholds, CEOT-based
systems can minimize the impact of both types of attacks on system performance.
When implementing an OT-based system to optimize network transmissions,
careful consideration of these factors is essential.

9.6 Conclusion

This chapter discussed several energy-efficient OT-based schemes for distributed
detection in the presence of Byzantine attacks. It has been assumed in the past
that OT-based framework operates in an attack-free environment. The designs
for optimal decision fusion rules at the FC were discussed, and they were found
to be highly effective under this assumption. However, some of the assumptions
made in those works may be violated in the presence of attacks. In this chapter, the
effect of Byzantine attacks on the performance of the COT-based system and the
CEOT-based system were investigated in Sections 9.3 and 9.4. Moreover, a compar-
ison of the resilience of CEOT-based and COT-based systems was made in Section
9.5, shedding light on how to employ OT-based frameworks in an attack-prone
environment. Some possible countermeasures to mitigate the impact of Byzantines
on OT-based systems were also discussed.

There are many open and challenging problems remain and require further
research. For instance, analyzing the performance of the OT-based schemes with
non-i.i.d. assumption under attacks is a very difficult problem. Designing robust
OT-based schemes in distributed detection is also challenging since a fraction of
multiple sensor data information is lost. Additionally, balancing energy efficiency
and security in distributed systems is an open question. There are also some other
promising energy-efficient schemes proposed in the literature (e.g. OT-based
energy harvesting scheme [Gupta et al., 2020], censoring-based scheme [Gu et al.,
2020]) by not receiving data from all the sensors all the time, which makes it
difficult for the traditional intrusion detection systems to track the identity of each
sensor in the networks. Therefore, further work on robust and energy-efficient
schemes will be valuable.
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10.1 Introduction

Smart cities are broadly defined as environments that exploit information and
communication technologies (ICTs) in order to improve the management of com-
mon resources, while adding to the well-being both of its citizens and of the users
of city services at large [Hammons and Myers, 2019]. A founding element of smart
city operation is data collection [Bui et al., 2012; Khan et al., 2017; Bastos et al.,
2022], and automatic processing, e.g., in cloud-based facilities [Krämer, 2014;
Alam, 2021]. Smart governance systems then provide real-time and on-demand
decision-making and adaptation of city services to optimize the fruition and
utility of such services. The vision of smart cities is deeply intertwined with that
of the Internet of Things (IoT). The field of the IoT relates to the extension of the
Internet into the physical realm, by means of everyday physical objects that are
spatially distributed and augmented using ICT. IoT devices provide the data for
the operation of a smart city with the needed resolution and sampling rates. The
IoT intersects deeply with the concept of smart city. However, scarce attention
has been devoted thus far by researchers in considering the concept of smart city
under the lenses of one of the activities most widespread in the society and in
cities: that of music.

In recent years, the IoT paradigm has been investigated under the lenses of
musical creativity, leading to the emergent field of the Internet of Musical Things
(IoMusT) [Turchet et al., 2018]. Nowadays, the area is receiving increasing
attention by the industrial, academic, and artistic research communities, as
testified by a growing number of publications, products, and musical perfor-
mances. Specifically, the IoMusT relates to the networks of “Musical Things,”

Wireless Sensor Networks in Smart Environments: Enabling Digitalization from Fundamentals to Advanced
Solutions, First Edition. Edited by Domenico Ciuonzo and Pierluigi Salvo Rossi.
© 2025 The Institute of Electrical and Electronics Engineers, Inc. Published 2025 by John Wiley & Sons, Inc.
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which are intelligent and connected objects serving a musical purpose. Thanks
to their connectivity features, Musical Things are able to interact with each
other and cooperate to reach common musical goals. The IoMusT technological
infrastructure enables ecosystems of interoperable devices that connect musical
stakeholders with each other providing novel interaction possibilities for different
kinds of musical activities. These activities include performance [Bevilacqua
et al., 2021], composition [Clester and Freeman, 2021], pedagogy [Alexandraki
et al., 2023], and music therapy [Timoney et al., 2020], both in co-located and
remote settings. As a consequence, manifold are the musical stakeholders who
can be beneficiaries of IoMusT technologies, including performers, composers,
students, teachers, conductors, studio producers, live sound engineers, and
audience members.

We believe that a smart city should not just be a place where ICT is used for cre-
ating greater efficiencies in a city’s services and resources [Hammons and Myers,
2019], where data is connected and harvested from smart instruments and sen-
sors, and then used to create smart services for citizens. Rather, in this chapter,
we propose the concept of “smart musical cities,” which specifically targets musi-
cal stakeholders: we push the vision that current- and next-generation connectivity
technology should turn smart cities into creative hubs, that enable different actors of
artistic efforts to seamlessly work together, both synchronously and asynchronously.
Moreover, a smart city should open and promote the fruition and the very percep-
tion of art environments to the public at large, making it possible to interact with
them in ways that are creative per se.

For example, with reference to Figure 10.1, smart musical cities will enable
musicians to perform together while being distributed across a possibly
widespread geographical area. The presence of local computing facilities
integrated as core resources of access and transport networks will provide a
low-latency and highly reliable resource to perform basic (e.g., mixing) and more
advanced audio streaming functions (e.g., error concealment, or superimposition
of a live and a recorded audio/video stream). In the same vein, smart musical
cities should enable musical performances themselves to be distributed: different
bands may perform at different venues (such as arenas, bars, and in the streets)
and should allow distributed audiences (possibly located all over a prescribed
geographical boundary) not only to interact with the band in ways conceived to
enhance the musical experience but also among themselves (synced cheering,
choral singing, rhythmical sounds such as foot stomping and hand clapping).

A smart musical city should enable the fruition of the very city districts and envi-
ronments in an artistically and historically engaging fashion. For example, tourists
should be able to roam a city while hearing reproduced voices of past personalities,
important events (such as the construction of key civilian infrastructure, the pro-
mulgation of a landmark law, past disasters, battles, as well as voice soundscapes),
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Figure 10.1 Concept of a smart musical city along with the example services considered
in Section 10.3.

leading to a form of “4D” tourism, where the time dimension is provided by sound
experiences. Engaging descriptions of the surroundings should be available and
consumable on demand, possibly made to engage passing people by means of the
above techniques. Sentiment analysis for people passing in certain environments
or districts may be associated with the best music to foster similar sentiments. In
turn, recommender systems for music listening and may tap on the location where
a person is moving and suggest tunes and works of art related to that location, its
general sentiment, as well as past experiences from other users.

Generative music approaches relying on artificial intelligence (as is the case,
e.g., for the Holon app [Holmqvist et al., 2023]) can very well complement all
of the above smart interactions, e.g., by inspiring to urban morphology and land
use to change recommendations or morph the style a specific audio performance
is played back to the user. Notably, the information on land user coverage can
be taken from open databases (including, e.g., OpenStreetMap, OpenTreeMap, as
well as local, higher-resolution city-level or regional databases), making a perfect
case for how the availability, connection, and interaction of data from different
sources can improve city services and cultural experiences alike.

Similar applications of real-time musical interactions mediated by fast and reli-
able network connectivity include, e.g., music teaching and pedagogy in general,
as well as musical therapy (e.g., for mental of physical rehabilitation). The remain-
der of this chapter will present enabling technologies for IoMusT interactions in
smart cities (Section 10.2) and explain our vision for IoMusT applications such
as those discussed in this introduction (Section 10.3). Finally, Section 10.4 draws
concluding remarks.
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10.2 Key-Enabling Technologies for IoMusT in Smart
Musical Cities

There exist a number of key enabling technologies for smart musical city appli-
cations. These primarily include Musical Things, networking infrastructures and
protocols, as well as storage and datasets. In the following, we describe such tech-
nological components. It is worth noticing that the joint use of the technologies
mentioned below is currently leading to novel digital ecosystems of humans and
machines, which are expected to support musical communities in their activities
in unprecedented ways.

10.2.1 Musical Things

A Musical Thing can take the form of any smart device utilized to control, gener-
ate, or track responses to music content. To date, the IoMusT research community
has developed various types of Musical Things, both in industrial and academic
settings [Keller et al., 2019; Yaseen et al., 2022]. Relevant examples in this space
are the so-called smart musical instruments [Turchet, 2019], which are musical
devices enhanced with intelligent features capable of conferring the instrument
with context-awareness and proactivity abilities. Another example is represented
by the musical haptic wearables [Turchet et al., 2021], which are wireless devices
conceived to support musical communication leveraging the sense of touch.
Furthermore, virtual and augmented reality head-mounted displays can be used
for musical applications in networked, shared environments [Loveridge, 2020].

The development of Musical Things is rooted in embedded systems that are ded-
icated to low-latency audio processing tasks and are equipped with connectivity
capabilities [McPherson and Zappi, 2015; Turchet and Fischione, 2021]. Thanks
to such operating systems it is possible to build dedicated low-latency applica-
tions leveraging embedded music information retrieval methods [Stefani et al.,
2022; Pelinski et al., 2023]. The extracted information can then be repurposed in
many ways, especially in real-time, to create different kinds of musical applica-
tions (e.g., for the control of stage lights or smoke machines). Another relevant
technology supporting the development of Musical Things applications is Web
Audio [Marasco and Allison, 2019]. The Web Audio API is a proposed standard
of the World Wide Web Consortium [Buffa et al., 2022], which makes it possible
to generate, analyze, and process audio streams directly in the browser.

From a different perspective, researchers have devoted their attention to the
development of different frameworks aiming at the efficient interconnection of
Musical Things [Fraietta et al., 2019; Matuszewski, 2020; Dannenberg, 2022;
Vieira et al., 2022; Turchet and Antoniazzi, 2023], as well as of geographically
displaced musicians via the so-called network music performance systems
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[Carôt and Werner, 2008; Cáceres and Chafe, 2010; Drioli et al., 2013; Rottondi
et al., 2016; Carôt et al., 2020b; Turchet and Fischione, 2021]. In particular,
recent years have witnessed an increasing use of 5G technologies in musical
settings [Carôt et al., 2020a; Cheli and Giordano, 2022; Dürre et al., 2022; Turchet
and Casari, 2024a].

10.2.2 5G-and-Beyond Networks

One foundational aspect characterizes musical interactions through the IoMusT:
a participating user should receive audio stimuli fast enough to both mask any
delays due to networking and data transfer and enable a smooth and seamless
interaction. Therefore, the most important aspect of IoMusT exchanges is reliable
and fast network connectivity. For instance, perceptual studies have proven that
the maximum end-to-end delay bearable by performers playing together over the
Internet is between 20 and 30 ms [Rottondi et al., 2016] in the absence of syn-
chronization cues, e.g., from a conductor. For higher delay values, the performers
become unable to maintain a stable tempo and tend to slow down progressively.
The reliability of the connection is also extremely important, as such stringent
delay values leave very little space for the retransmission of lost packets. Even if
audio streams include replicas of sent audio data,1 excessive losses cause gaps in
the audio stream that cannot be easily compensated for. Some algorithms exist
that apply signal processing or machine learning to automatically conceal audio
losses [Fink and Zölzer, 2014; Verma et al., 2020]. Yet, a burst of packet errors still
implies perceivable interruptions in the audio data.

The above discussion generalizes to all IoMusT interactions and explains
why fifth-generation (5G) cellular connectivity receives so much expectations
from the IoMusT community. With respect to preceding 4G technology, 5G has
several desirable features. Besides adding reliability via more effective channel
coding, 5G adds an option to operate scheduling at a higher rate by increasing
the numerology of the system [Vihriälä et al., 2016]. Higher numerologies
correspond to allocating shorter slots that have a larger bandwidth available.
Using a sufficiently high numerology, e.g., 𝜇 = 1 to 3, it is possible to tune the 5G
scheduler to allocate resources with millisecond granularity, and greatly reduce
the baseline scheduling latency of a 4G network, which is on the order of 10 ms.

Further 5G improvements leading to the development of ultra-reliable
low-latency communications (URLLC) for multiuser scenarios with periodic and
non-sporadic traffic are expected to further improve the feasibility of 5G cellular

1 Forward error correction (FEC) is usually not an option, as packetized audio usually comes in
very packets of a few hundred bytes, and complex but effective error-correcting codes would
need longer codewords and imply a non-negligible processing time. In turn, the latter would
seize part of the latency budget.



238 10 Internet of Musical Things for Smart Cities

technology for the IoMusT. In addition, advancements on grant-free communica-
tions should provide an extra means to improve the IoMusT experience, e.g., by
supplementing lost data or by enabling the early recovery of exceedingly delayed
packets. While URLLC is not fully deployed to date and plans indicate it will not
start being commercially available at large before 2025 in the EU [EU Parliament,
2021], such a technology holds great promise of extra-fast data delivery [Yang
et al., 2021; Yun et al., 2022] and vanishing errors [Weerasinghe et al., 2020],
supporting the fast transmission and high-reliability requirements of the IoMusT.

Due to the stringent latency requirements, the presence of computing capability
as close as possible to the IoMusT devices is of paramount importance. Consider
a typical IoMusT scenario with a group of networked music performers: in the
baseline case, each performer would need to send its audio stream to every other
performer, such that their IoMusT system can collect, resynchronize, and mix
audio locally for the performer’s fruition. In this scenario, the amount of audio
flows increases as the square of the number of performers with two undesirable
consequences: that each flow may incur errors and become a source of quality loss
for the entire mixed output stream; and that separate flows may have to contend
for the same network access resources. The latter case is likely in densely popu-
lated areas where two performers may be located within the coverage area of the
5G base station (gNB), and potentially affects an entire group of performers if a
whole band or orchestra should interact wirelessly on the same stage, typically
covered by the same gNB.

The 5G ecosystems provide a first solution to this square-law multiplicity of
flows by inherently providing Multi-access Edge Computing (MEC) capabilities
embedded in the 5G operator’s network [ETSI Group Specification, 2022]. MEC
functionalities may reside in the operator’s network and be colocated or very close
to the edge of the network. For example, a single MEC host may serve a restricted
number of geographically close gNBs. This enables a much more efficient interac-
tions from an IoMusT perspective: each performer may send its own data stream
to the MEC server, that will host mixing/audio processing functions and jitter
buffers itself. The audio streams do not need to reach every performer any longer,
but rather concentrate on the MEC server: thus, for n performers, the networked
music performance only requires n upstream and n downstream flows, leading to
a much more efficient resource usage. Having an architecture based on an MEC
server hosting mixing and processing functions also enables more effective trans-
mission error concealment, which can occur along with jitter buffer management,
before preparing a final mixed stream to redistribute to the interacting perform-
ers. Similarly, a MEC-based architecture can support complex audio computations
such as those involved in spatial audio algorithms [Martusciello et al., 2023].

In the 5G ecosystem, network function virtualization (NFV) is the main-
stream approach to deploying network functions in the operator’s compute
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sites. Given the current uptake of fully 5G deployments (cf. standalone, SA,
versus non-standalone, NSA 5G networks [Turchet and Casari, 2023]), it is
reasonable to assume that local computation capabilities will be available at
possibly multiple sites over a given geographical or metropolitan area. These sites
may host the virtual network functions (VNFs) that enable IoMusT interactions.
Relevant examples in the context of a smart musical city include supporting
distributed performers as described above, providing streamable contents for
musical education, enabling the interaction with location-specific sounds that
recall specific events or historical periods, and run the intelligence that detects
the state of a patient and matches relevant features thereof with the surroundings,
environment, time-of-day, and similar characteristics of therapeutic contexts.

10.2.3 Datasets and Storage

Datasets for the IoMusT require a separate discussion. As is in the nature of smart
cities, data from different instruments and sensors should be converged to utilizers
that can extract values from them. Data continuously collected via Musical Things
from multiple users in manifold times, spaces, and activities can be leveraged to
create unprecedented context-aware systems, as well as proactive applications
based on the knowledge of the tracked context (such as recommender systems to
be used in a variety of musical activities). In general, as it should have appeared
clear from the above discussion, several services of the IoMusT are data-driven
(e.g., as related to recommendations on location-dependent soundscapes) or
AI/ML-based (e.g., error concealment in networked music performance, or
generative music tools for pedagogy and immersive interactions with a given
environment). These services require significant amounts of data to generate
reliable outcomes or to train their underlying models.

Yet, one of the main issues with datasets for the IoMusT is that there exist few
if any. For example, despite an extremely rich global tradition in music perfor-
mances, musical instruments are traditionally not networked. The very IoMusT
concept has been conceptualized only recently [Turchet et al., 2018, 2023]: thus,
very little data is available about, e.g., utilization patterns, user preferences, styles,
and contextual information related to smart musical instrument and Musical
Things usage. Similarly, recommender systems would require a sufficiently large
amount of data to at least be able to profile user needs/tastes and provide relevant
recommendations. While general musical user profiling is commonly performed,
e.g., by popular apps and web sites, the fact that the musical recommendation
panorama has not significantly progressed beyond user-directed recommenda-
tions also hints at the absence of workable and actionable datasets. For example,
a quick search for the “music generation” task on paperswithcode.com [Papers
With Code, 2023] reveals 23 datasets. Comparatively, datasets related to large
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language models, generation of text, image segmentation, and recognition can
count on more than 1000 datasets. Therefore, additional work is needed to favor
a data-driven approach that keeps services tailored to fruition by different users,
and up to date with the most recent utilization trends, in the spirit of a smart
musical city [Hammons and Myers, 2019].

A complementary problem is that of making the datasets available to the ser-
vices and users. This entails methods facilitating the storage of such data, their
interoperability across heterogeneous devices and services, as well as guarantee of
fast accessibility in networked settings.

10.3 Smart Musical City Concept and Services

Some researchers have recently started to investigate the musical flavor of the
smart city concept. However, only a handful of studies exist to date on such a
topic. In the project Sonic City, the authors developed a system that enables users
to create electronic music in real time by walking through and interacting with the
urban environment [Gaye et al., 2003]. Other authors proposed to use sonification
for the interpretation of smart musical city data and the production of novel musi-
cal experiences [Sarmento et al., 2020; Roddy and Bridges, 2021]. Nevertheless,
the themes and perspective addressed thus far in the literature are rather different
from the vision proposed in the present work.

Section 10.3.1 present and discuss different services that a smart musical city
could offer to citizens and visitors alike. Section 10.3.1 discusses the interaction
between musicians and virtual agents assisting search, play, and composition
tasks; Section 10.3.2 presents participatory music performances as a novel way for
players and audiences to interact, mediated by high-reliability and low-latency
wireless networks; Section 10.3.3 discusses how to exploit music to foster immer-
sive visiting experiences both in touristic and in everyday contexts; Section 10.3.4
outlines how pedagogy can be enhanced by musical applications.

10.3.1 Interaction Between Musicians and Virtual Agents on Server

The IoMusT technological infrastructure has the potential to enable novel forms of
interactions of musicians with musical content mediated by virtual agents running
on remote servers. An example of such applications is reported in Turchet et al.
[2020]. Authors developed a system comprising a smart guitar and a cloud-based
server hosting a music repository. The purpose of the system was that of support-
ing the guitar player in querying the repository by a novel modality: instead of
performing textual queries using the name of the artist or the title of the piece
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(like it occurs with conventional music streaming services such as Spotify), the
musician plays an excerpt with given musical features (e.g., tempo, chords, mood).
The intelligence embedded in the instrument retrieves such features and uses
them to perform a content-based query. The server then returns to the player pieces
of music matching those requested musical features. Such a study highlighted the
need for progressing the computation capabilities of embedded audio systems as
well as the need for reducing the network latency, using for instance 5G and a
MEC server.

Along the same lines, it is possible to envision other types of services based
on fast access to a server using Musical Things and a dedicated ultra-reliable
low latency communication. These include for instance novel forms of recom-
mendation systems to support music teaching and learning, and in particular
self-learning. In the latter case, a virtual agent running on a remote server could
determine in real-time the errors performed by a learner and provide recommen-
dations in a timely manner. Moreover, it is possible to devise novel forms of tools
assisting composition processes, where virtual agents hosted on a server could
generate music excerpts based on inputs from composers. The same concept
could also apply to other kinds of musical activities such as automatic mixing
performed in real time. In general, for these scenarios to occur and succeed, it
is necessary to apply advanced techniques for big data analytics, as well as it is
important to create interfaces that ultimately can provide users with a satisfying
user experience.

10.3.2 Participatory Networked Music Performances

The IoMusT infrastructure allows to imagine novel kinds of artistic forms posi-
tioned at the confluence of networked music performance (NMPs) and participa-
tory art, in particular technology-mediated audience participation (TMAP). These
new art forms can be performed in the context of a smart musical city.

NMP systems are hardware and software solutions conceived to allow musicians
to play at a distance thanks to a communication link. Their end goal is to reproduce
the same conditions as acoustic-instrumental on-site performances. To achieve
this goal different issues must be overcome, namely latency, jitter, and the cred-
ible rendering of the acoustic scene shared between musicians. The main issue
among these is represented by the latency introduced by the acquisition, pack-
etization, and transmission of audio data through the network. A related issue
is packet jitter (i.e., the latency variation between consecutive packets carrying
audio data), which needs to be kept constant and as low as possible. Several stud-
ies have shown that to guarantee performative conditions as realistic as possi-
ble, the delay of the content produced at one end and perceived at the other end
shall not exceed 20–30 ms, which correspond to the time taken by sound waves
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propagating in air to cover a distance of 8–10 m [Rottondi et al., 2016]. Such dis-
tance is normally assumed to be the maximum tolerance threshold for the phys-
ical displacement among players in a room to ensure a stable interplay. Further-
more, to achieve a high degree of realism in an NMP application, it is essential
to recreate for all musicians involved a perception of sharing the same space, as
recently shown in Tomasetti and Turchet [2023]. This can be achieved by means of
spatial audio algorithms which enable a three-dimensional localization of audio
sources [Paterson and Lee, 2021], as well as by means of room acoustic modeling
techniques [Savioja and Svensson, 2015], which can simulate the type of room in
which musicians virtually play (e.g., a concert hall or a rehearsal room).

In a different vein, TMAP systems [Hödl et al., 2017] capitalize on informa-
tion and communication technologies with the aim of democratizing access to
music making and increasing the active engagement of audiences in live music
performances. These systems disrupt the traditional unidirectional chain of musi-
cal communication in which the musical messages are exchanged sequentially
from composers to performers to listeners.

The IoMusT makes the combination of NMP and TMAP possible, enabling novel
forms of artistic expression where displaced audiences can interact with displaced
musicians, and actually contribute to the performance. For instance, a concert can
be performed by different bands playing at different venues of a city, and audiences
both colocated with the bands and displaced (e.g., in bars, or at their homes) could
actively participate to the end result of the performance.

10.3.3 Cultural Heritage

Recently, several applications have been supporting tourism and local content
creators by providing platforms where creators could store voiced description
of a place, stories about it as well as music, and tourists could roam around a
city, be localized, and play such previously recorded audio streams [del Carmen
Rodríguez-Hernández et al., 2012]. For instance, such apps as Citytalks2 and
Autio3 follow the above paradigm. Other apps such as izi.Travel4 and Vox City5

also provide an interface to consume location-dependent audio content, but focus
on travel guides. In the context of a smart musical city, services for leisure and
tourism, such as the ones above, are extremely relevant. Yet, the cultural heritage
of a given location is rich in non-voice sounds. From a musical perspective, smart
musical city and landscape environments may be associated to music, sounds,
and voices related to famous events [Cheng and Shen, 2016]. Being able to revamp

2 https://www.citytalks.eu.
3 https://autio.com.
4 https://izi.travel.
5 https://voxcity.com.

https://www.citytalks.eu
https://autio.com
https://izi.travel
https://voxcity.com
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Figure 10.2 Plan of the
city center of Verona, Italy,
with landmarks associated
to location-specific
musical tunes and sounds.
Source: OpenStreetMap/CC
BY SA 2.0.

these sounds may greatly enrich the interaction between people and sites of
cultural interest [Braunhofer et al., 2013].

Take as an example the city of Verona, Italy, as shown in the simplified map of
Figure 10.2, and imagine a person wandering through the city while being able
to access location-dependent sounds from an app or similar facility. Verona is
ripe with Roman age masterpieces, including some of the old city walls and the
Arena (former gladiator amphitheater, now a world-famous opera venue): the per-
son could approach the Arena, listen to sounds of gladiator clashes as well as
famous opera arias. Verona is also the setting of Shakespeare’s “Romeo and Juliet,”
and a fourteen-century house-tower of medieval origins has been converted into
a museum known as “Juliet’s house,” showing typical furnishing, clothing, and
tools for different activities of the time. The visitor to the neighborhood of the
house may listen to settings of medieval markets in the nearby streets (famous
surrounding squares hosted several markets and landmarks of the political and
civilian life of the medieval town) and could listen to popular music tunes, both
those famous at the time and later associated with the same historical period. Pass-
ing by Verona’s monumental cemetery may turn up pirate songs as the person
approaches the tomb of Emilio Salgari, known for his novels about the fictional
late ninetieth-century pirate Sandokan. Verona’s fair area is home to the most
well-known Italian wine exhibition, “Vinitaly,” which may trigger sounds of toast-
ing and bottle opening to people passing by. These are just a few examples of the
way location-related sound and music suggestions powered by the IoMusT can
make the experience of many places much more immersive as well as contribute
to cultural dissemination.
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In the same vein, people could pass by different places not just get suggestions
about typical musical tunes for those places, but also a chance to interact with
them, e.g., by singing or playing over these musics [Cramer, 2016]. For example,
Verona’s Arena nearabouts may be associated with famous opera arias, over which
casual singers may superimpose their own voice, and other amateurs or profes-
sionals may provide extra voicing, harmonization, or similar vocal additions. Play-
ers and performers may add their own playing to the aria, and transform its style
or empower a given harmonic section.

A similar musical service a smart musical city could offer to citizens and people
at large would be location-dependent generative musical suggestions [Krause
et al., 2016]. For example, different districts of a city or different areas of its
surroundings may be associated with different music moods. Continuing the
example of Verona’s landmarks considered above, Juliet’s house may trigger
romantic music, the Arena epic tunes, and the medieval squares may pass a
relaxed mood matching the many bars and surrounding meeting places. Notably,
the system could accumulate data over time by recording the preferences of the
listeners that decide to proceed with the suggested tunes or request different
musical motifs or moods. In the long run, the system may learn and provide a
“musical mapping” of a city’s neighborhoods such that, e.g., places with some
strong ethnical characterization propose typical music for the local population
and favor cultural interchange.

Finally, a sufficiently fine tracking of the association between musical tastes
and locations may produce a strong mapping of typical musical memories, and
help people passing by revamp both their own memories and collective memo-
ries of past important events. This service would be different from serving users
with particularly famous tunes that most people would like to listen at a given
place: rather, it relates to tracking what a user visited in the past and which musical
works, tunes, or styles were associated with the experience at the visited locations.
Then, future visits to those same locations may rekindle memories more effectively
by proposing the same music, following the well-known pattern for which synes-
thetic experience and associated emotions are more effective at strengthening or
recalling memories [Jäncke, 2008; Rothen et al., 2018].

10.3.4 Pedagogy

While it has been noted that the panorama of musical pedagogy remains often
confined to tools such as metronomes and tuners, leaving it to expert teachers
to address instrument-specific skills such as attack sharpness [Acquilino and
Scavone, 2022], a smart musical city offers a geographically bounded area where
music pedagogy can be taken to a much more interactive and connected level
than in traditional group or one-to-one classes. For example, the MusiCoLab
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system provides an environment for collaborative music learning, based not just
on lectures and practice, but also on a number of tools to empower interactive
practices [Alexandraki et al., 2023]. Such tools include collaboration engines
with musical data and metadata, score following and annotation, a music gen-
eration engine that includes re-harmonization and blending, all supported by
a conferencing server to enable personal communications between the teacher
and the pupil(s). As the authors note, the system suffers from the well-known
issues that affect any networked music performance, whereby the tolerance to
the latency of the interactions is one order of magnitude less than in speech.
If network transport delays are one of the main contributions to end-to-end
delays [Turchet and Casari, 2024a], the relatively limited geographical extension
of smart cities and the availability of slicing in the 5G ecosystem [Turchet and
Casari, 2024b] would enable controlled transport latency, and thus a workable
experience in musical pedagogy. The use of artificial intelligence complements
the above features by providing teachers and students with automatic algorithms
to assess rhythm, intonation, and level of learning or correctness of execution for
teacher assignments [Wei et al., 2022]. As noted above, training such AIs will
be the only means to make them sufficiently reliable tools for the best fruition
by educators and pupils. The smart musical city and its inherent possibilities to
coalesce data, readings, and feedback from several interactions across different
environments, constitutes an ideal mediator to collect data required by musical
pedagogy services.

Smart musical cities as interconnected social conglomerates are also the perfect
place to implement social pedagogy practices, which has been shown to greatly
help address social inequality by considering upbringing as a responsibility of the
whole social fabric rather than of specific individuals. From a musical perspective,
several studies suggest that partaking in a joint activity such as musical perfor-
mance can help develop not only the learning capabilities of children (includ-
ing, e.g., disadvantaged, looked-after, and adopted children) but also create deeper
bonds between them and their responsible/caregiver adults [Humphrey, 2020].
In the same vein, playful learning in primary schools has been associated with
an increase of meaningful engagement when associated to music [Byrne, 2021].
These examples should convince that smart musical cities are not just the drive
of new IoMusT-based musical pedagogy services but also vehicles of pedagogical
innovation per se.

10.4 Conclusions

This chapter aimed to offer our perspective on how smart cities should integrate
with one of the main activities that is actually performed in cities: musical and
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sound-related interactions. We deem the Internet of Musical Things to be the tech-
nological driver of such future integration, supported by the continuously increas-
ing reliability of low-latency transmissions, e.g., from 5G-and-beyond technology.
We described several types of interactions and applications that smart cities can
enjoy with the support of the IoMusT, including networked performances both by
humans and by a solo player interacting with virtual agents, cultural heritage pro-
motion, location-based recommendation systems, memory revamping as well as
music pedagogy.

In particular, we discussed that, like for other smart city services, musical ser-
vices also need data to train machine learning models, as well as to tune services to
specific user profiles. IoMusT devices can be the driver of such new data collection
streams and provide relevant measurement of music and musical instruments uti-
lization habits and style, along with commonplace musical preferences based on
searches and listening history.

Notably, significant support for such developments exists from the scientific
community, both through technical groups such as the IEEE Communications
Society Internet of Sounds Emerging Technologies Initiative,6 and via periodic
meetings that are taking momentum, such as the International Symposium on
the Internet of Sounds, which will reach its 5th edition in 2024.
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11.1 Introduction

Advances in wireless communication and micro-electro-mechanical system
(MEMS) technologies make it possible to deploy a sensor network (SN) for
surveillance, patrolling, and target tracking [Souza et al., 2016]. Generally,
target-tracking methods in SNs can be divided into two main categories, i.e. the
centralized schemes and the decentralized ones, as illustrated in Figure 11.1. In
centralized approaches, a fusion center is deployed to collect all measurements
from the entire sensor nodes of the SN and process these data to obtain the
information (including the position and the velocity) of the target of interest.
The fusion center can employ the measurement-augmented approach [Lee,
2008; Ge et al., 2016] and implement the well-known Kalman filter (KF) and its
nonlinear variants (e.g. the cubature information filter (CIF) [Pakki et al., 2011])
as centralized tracking solutions.

In centralized solutions, readings of each sensor node are required to be trans-
mitted to the data fusion center, which may lead to substantial communication
overhead, thereby limiting scalability. In addition, the fusion center is solely
responsible for data processing. Therefore, a centralized target-tracking scheme
over SNs is heavily reliant on the reliability of the fusion center and may mal-
function if the fusion center fails. Moreover, the knowledge of the measurement
model at each node should be transmitted to the fusion center, which introduces
additional challenges, especially for heterogeneous SNs.

#The work of H. Wang was supported by the National Natural Science Foundation of China under
Grants no. 62103083. The work of H. Li was supported in part by the National Science Foundation
under Grants CCF-2316865, ECCS-2212940, and ECCS-2332534.
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Solutions, First Edition. Edited by Domenico Ciuonzo and Pierluigi Salvo Rossi.
© 2025 The Institute of Electrical and Electronics Engineers, Inc. Published 2025 by John Wiley & Sons, Inc.
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Centralized network

Data fusion center Sensor node

Sensor

Sensor and data processing node

Decentralized network

Figure 11.1 Centralized network and decentralized network.

To address these challenges, decentralized target-tracking solutions are gaining
interest. In these approaches, each node within the SN tracks the target’s state
using its own observations, as well as those from its neighbors through local
communication. The decentralized method enhances scalability and reliability
since it does not require the detailed topology of SNs, which is advantageous
for time-variant SNs. Different from centralized solutions, which consolidate
all network observations for jointly processing, decentralized solutions may
experience some performance degradation and increased sensitivity to outliers.
Therefore, a proper information exchange strategy is needed for decentralized
solutions to closely match the centralized solutions’ performance. Meanwhile,
additional procedures should be devised to ensure robustness to outliers in
decentralized solutions.

Decentralized solutions require strategies for data exchange among neighbor-
ing nodes to avoid over-utilization or under-utilization of related measurements.
To this end, several consensus schemes have been proposed, e.g. [Olfati-Saber
and Shamma, 2005; Battistelli et al., 2014a, 2015; Chen et al., 2017]. Conventional
decentralized target-tracking methods usually rely on the Gaussian assumptions
for measurement noises. In practice, however, such a Gaussian assumption may
be invalid due to the presence of outliers, especially in scenarios where massive
low-cost sensors are deployed. Several solutions have been developed to address
outliers in SNs. Specifically, to approximate the underlying non-Gaussian noises
caused by outliers, a distributed algorithm based on the Gaussian mixture model
is proposed in Li and Jia [2012]. An interactive multiple model (IMM) scheme is
utilized to devise robust solutions in Battistelli et al. [2015] and Tian et al. [2015].
In addition, since outliers lead to a heavy-tailed measurement noise, Student’s t
distribution, which has a heavy tail, is employed to model the measurement noise
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for outlier-contaminated measurements, resulting in a centralized target-tracking
algorithm in Zhu et al. [2013], and a decentralized solution in Dong et al. [2018].

In this chapter, we employ an outlier-detection strategy [Wang et al., 2018] and
derive both centralized robust target-tracking and decentralized methods. Specif-
ically, we introduce an outlier-detection measurement model by combining the
original measurement model with an outlier indicator using a beta-Bernoulli prior.
The mean-field variational Bayesian (VB) inference method is then utilized to
jointly estimate the state of the target and the outlier indicators. In the decen-
tralized solution, each node implements the VB inference to estimate both the
state and the outlier indicator, and the hybrid consensus scheme is employed to
ensure consistency across nodes in SNs. Numerical simulations are conducted to
illustrate the effectiveness of the proposed algorithms.

11.2 Problem Formulation

Consider a target-tracking problem in an SN, as illustrated in Figure 11.2. The
target is governed by a discrete-time process

xt = f(xt−1) + 𝒗t, (11.1)

in which xt ∈ ℝn denotes the state of a target, f(•) is the state transition function,
and 𝒗t ∼ ℕ(0,Qt) denotes the process noise. x0 ∼ ℕ(x̂0|0,P0|0) is the initial value of
the state. In practice, f(•) is obtained from either some prior knowledge of target
motion [Li and Jilkov, 2003] or a data-driven approach [Aftab and Mihaylova,
2020]. The considered SN has N nodes including both sensor nodes and

Sensor node

Communication node

Communication link

Target trajectory

Figure 11.2 Target tracking in an SN.
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communication nodes, and its topology can be described by an undirected graph
 = ( ,), where  = {1,… ,N} is the vertex set, and  ⊂ {{i, j}|i, j ∈ , i ≠ j} is
the edge set. The vertex set can be represented by  =  ∪ , where  = {1,… , S}
is the sensor nodes set, and  = ⧵ denotes the communication nodes set.
Generally, the SN deploys the communication nodes to enhance the connectiv-
ity. We assume that there exists a path between every pair of vertices, i.e. the
considered SN is connected. For convenience, the set containing the sth node and
its neighbors is denoted by s = { j ∈ |{s, j} ∈ } ∪ {s}.

These sensor nodes have the capabilities to make measurements associated with
the state vector of the target. Specifically, for the sth (s ∈ ) sensor, its observation
is given by

yt,s = hs(xt) +𝒘t,s, (11.2)

where yt,s ∈ ℝms is the recorded reading, hs(•) is the measurement mapping,
and 𝒘t,s ∈ ℝms denotes the measurement noise. For the measurement noises of
different sensor nodes, we have the following assumptions: (i) 𝒘t,s1

and 𝒘t,s2
for

s1, s2 ∈  and s1 ≠ s2 are mutually independent; (ii) 𝒘t,s for s ∈  is independent
of both x0 and process noise.

Nominally, each measurement noise 𝒘t,s follows a Gaussian distribution, say,
𝒘t,s ∼ ℕ(0,Rt,s). Nevertheless, the Gaussian property becomes invalid when mea-
surements are contaminated by outliers. To identify outliers in measurements, a
binary variable zt,s is introduced to indicate whether yt,s is an outlier or not. Specif-
ically, zt,s is set to 1 if yt,s is a reliable observation, while zt,s is assigned to 0 when yt,s
is an outlier. With such an indicator, we introduce the following outlier-detection
model for yt,s:

p(yt,s|xt, zt,s) ∝
(
ℕ(yt,s;hs(xt),Rt,s)

)zt,s , (11.3)

where zt,s follows the following beta-Bernoulli distribution:

p(zt,s|𝜋t,s) = 𝜋
zt,s
t,s (1 − 𝜋t,s)(1−zt,s). (11.4)

p(𝜋t,s) ∝ 𝜋
e0,s−1
t,s (1 − 𝜋t,s) f0,s−1. (11.5)

It should be noticed that 𝜋t,s is a stochastic parameter characterized by e0,s and f0,s.
From (11.3), we know that p(yt,s|xt, zt,s) is the same as the signal model in (11.2)
when zt,s = 1, while it is a constant when zt,s = 0. In the latter case, yt,s is marked as
an outlier. This is because the value of the likelihood function is a constant that is
independent of the state. In the outlier-detection model, one can adjust the value
e0,s and f0,s to control the probability that yt,s is an outlier, i.e.

Pr
(

yt,s is an outlier
)
=

f0,s

e0,s + f0,s
. (11.6)
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The objective is to develop solutions to track the target (i.e. estimate the states
of the target), as well as to detect outliers that may be encountered at each sensor
node of the SN. Both the centralized and the decentralized tracking schemes are
considered. Specifically, for the decentralized tracking approach, we integrate the
consensus strategy with the outlier-detection technique.

11.2.1 Cubature Information Filter

In this section, we briefly summarize a typical Gaussian approximation filter,
e.g. the cubature information filter (CIF). For convenience, we consider the
state-space model (i.e. (11.1) and (11.2)) with only one sensor and omit s for
convenience. In addition, given a Gaussian distribution ℕ(𝝁,𝚺), its information
matrix (or precision matrix) and information vector are, respectively, defined as
𝚪 = 𝚺−1 and 𝜸 = 𝚪𝝁. The procedure of the CIF is described as follows.

Initialization: Denote I ∈ ℝn×n being an identify matrix and 𝚫 = [I − I]. The
basic cubature point set {𝜼i, 𝜔i} for i = 1,… , 2n can then be computed, where
𝜔i = 1∕(2n) and 𝜼i =

√
n𝚫i with 𝚫i being the ith column of 𝚫.

Prediction: The transformed sigma points are generated as

Pt−1|t−1 = St−1|t−1ST
t−1|t−1, (11.7)

𝜼i,t−1 = St−1|t−1𝜼i + x̂t−1|t−1, (11.8)

where ℕ(x̂t−1|t−1,Pt−1|t−1) is the posterior density at the (t − 1)th time instant.
Then, the predicted state and its associated covariance are calculated by

x̂t|t−1 =
2n∑
i=1
𝜔i𝝍 i,t−1, (11.9)

Pt|t−1 =
2n∑
i=1
𝜔i(𝝍 i,t−1 − x̂t|t−1)(𝝍 i,t−1 − x̂t|t−1)T + Qt−1, (11.10)

where 𝝍 i,t−1 = f (𝜼i,t−1). The corresponding information format is then given by

𝚪t|t−1 = P−1
t|t−1, 𝜸t|t−1 = 𝚪t|t−1x̂t|t−1. (11.11)

Filtering: Applying the statistical linear error propagation methodology [Lee,
2008], the pseudo-measurement matrix is defined as

Ht = P−1
t|t−1Pxy, (11.12)

where Pxy is calculated by

Pxy =
2n∑
i=1
𝜔i
(
𝜻 i,t − x̂t|t−1

) (
𝝔i,t − ŷt

)T
, (11.13)
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in which 𝜻 i,t = St|t−1𝜼i + x̂t|t−1 with Pt|t−1 = St|t−1ST
t|t−1, 𝝔i,t = h(𝜁i,t), and

ŷt =
∑2n

i=1 𝜔i𝝔i,t. Given Ht, one can compute the following correlation information
terms:

ỹt =
(

yt − ŷt + Htx̂t|t−1
)
. (11.14)

It = HtR
−1
t HT

t . (11.15)

it = HtR
−1
t ỹt. (11.16)

Finally, the filtered state can be updated. Specifically, its information format is
computed by

𝚪t|t = 𝚪t|t−1 + It, 𝜸t|t = 𝜸t|t−1 + it, (11.17)

and its mean and variance are recovered as

Pt|t = 𝚪−1
t|t , x̂t|t = Pt|t𝜸t|t. (11.18)

11.3 Centralized Robust Target Tracking

For centralized processing-based tracking, measurements from sensor nodes
are collected at the fusion center, where they are utilized to track the target.
Considering the fact that measurements from different sensor nodes are mutual
independent, the likelihood function of the measurements can be formulated as
the product of the likelihood functions from all sensor nodes. Therefore, given
the latent variables 𝚯t ≜ {xt,t,𝝅t}, we have

p(t|𝚯t) =
∏
s∈

p(yt,s|xt, zt,s)p(zt,s|𝜋t,s)p(𝜋t,s), (11.19)

where t ≜ {yt,1,… , yt,S}, 𝝅t ≜ {𝜋t,1,… , 𝜋t,S}, and t ≜ {zt,1,… , zt,S}. The poste-
rior distribution with respect to 𝚯t conditioned on 1∶t is given by

p(𝚯t|1∶t) =
p(𝚯t,1∶t)

p(1∶t)
. (11.20)

Directly calculating p(𝚯t|1∶t) is challenging because p(1∶t) is in general com-
putationally intractable. To deal with this difficulty, we employ the variational
Bayesian (VB) approach [Tzikas et al., 2008]. Specifically, a mean-field variational
distribution q(𝚯t) = q(xt)q(t)q(𝝅t) is utilized as an approximation for the poste-
rior distribution p(𝚯t|1∶t), and the variational distribution is obtained via solving
the following optimization problem:

{q(xt), q(t), q(𝝅t)} = arg min
q(𝚯t)

KLD
(

q(𝚯t)∥p(𝚯t|1∶t)
)
, (11.21)
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where KLD(p1∥p2) is the Kullback–Leibler divergence (KLD) between two distri-
butions p1 and p2. The solution to (11.21) is given by

q(xt) ∝ exp
(⟨ln p(t,𝚯t|1∶t−1)⟩q(t)q(𝝅t)

)
, (11.22)

q(t) ∝ exp
(⟨ln p(t,𝚯t|1∶t−1)⟩q(xt)q(𝝅t)

)
, (11.23)

q(𝝅t) ∝ exp
(⟨ln p(t,𝚯t|1∶t−1)⟩q(xt)q(t)

)
, (11.24)

where ⟨a⟩b represents the expectation of a over the distribution of b, and
p(t,𝚯t|1∶t−1) is decomposed as

p(t,𝚯t|1∶t−1) = p(xt|1∶t−1)p(t|xt,t)p(t|𝝅t)p(𝝅t), (11.25)

where p(xt|1∶t−1) is the predictive density function, which is generally approxi-
mated by ℕ(x̂t|t−1,Pt|t−1) via (11.9) and (11.10). It is apparent that the update rules
in the VB inference, as given in (11.22)–(11.24), are coupled. The alternating
updating strategy is a prevalent method used to sequentially update variational
distributions, wherein each distribution is updated individually while the others
remain fixed.

In (11.22), keeping the terms that only relate to xt leads to

q(xt) ∝ exp

(
−1

2
∥xt − x̂t|t−1∥2

P−1
t|t−1

−
∑
s∈

⟨zt,s⟩
2

∥yt,s − hs(xt)∥2
R−1

t,s

)
, (11.26)

where ∥x∥2
A represents xTAx, and ⟨zt,s⟩ denotes the mean of zt,s. It appears that

q(xt) can be obtained via a Kalman filtering algorithm, particularly in its infor-
mation format. Specifically, q(xt) can be approximated by ℕ(x̂t|t,Pt|t), where the
associated two parameters are updated as

It,s = ⟨zt,s⟩Ht,sR
−1
t,s Ht,s, it,s = ⟨zt,s⟩Ht,sR

−1
t,s ỹt,s, (11.27)

𝚪t|t = 𝚪t|t−1 +
∑
s∈

It,s, 𝜸t|t = 𝜸t|t−1 +
∑
s∈

it,s, (11.28)

Pt|t = 𝚪−1
t|t , x̂t|t = Pt|t𝜸t|t, (11.29)

in which Ht,s is obtained via (11.12) using hs(xt), ỹt,s is updated via (11.14) based
on yt,s, and 𝚪t|t−1 and 𝜸t|t−1 are obtained via (11.11).

Fort, we have p(t) =
∏

s∈p(zt,s). This is because the elements int are mutu-
ally independent. Consequently, we can update q(zt,s) in a separate manner. Take
q(zt,s) as an example. Dropping off the terms in (11.23) that do not depend on q(zt,s)
results in

q(zt,s) ∝ exp
⟨

ln p(yt,s|xt, zt,s) + ln p(zt,s|𝜋t,s)
⟩

q(xt)q(𝜋t,s)

∝ exp
{
−0.5zt,s tr(Dt,sR

−1
t,s ) + zt,s𝜁1 + (1 − zt,s)𝜁2

}
, (11.30)
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where

Dt,s = ∫

(
yt,s − hs(xt)

) (
yt,s − hs(xt)

)Tq(xt)dxt, (11.31)

𝜁1 ≜ ⟨ln𝜋t,s⟩q(𝜋t,s) = Ψ(et,s) − Ψ(et,s + ft,s), (11.32)

𝜁2 ≜ ⟨ln(1 − 𝜋t,s)⟩q(𝜋t,s) = Ψ(ft,s) − Ψ(et,s + ft,s), (11.33)

in which Ψ(•) is the digamma function. From (11.30), it can be seen that zt,s follows
a Bernoulli distribution, and hence its expectation is given by

⟨zt,s⟩q(zt,s) =
e𝜁1−0.5tr(Dt,sR−1

t,s )

e𝜁1−0.5tr(Dt,sR−1
t,s ) + e𝜁2

. (11.34)

Analogously, owing to the independence, q(𝝅t) can also be formulated as∏
s∈q(𝜋t,s). Therefore, the update for q(𝜋t,s) is given as

q(𝜋t,s) ∝ exp
(
(et,s − 1) ln𝜋t,s + (ft,s − 1) ln(1 − 𝜋t,s)

)
, (11.35)

which indicates that q(𝜋t,s) ∼ Beta(et,s, ft,s) with

et,s = e0
t,s + ⟨zt,s⟩q(zt,s). (11.36)

ft,s = f 0
t,s + 1 − ⟨zt,s⟩q(zt,s). (11.37)

For clarity, we provide a summary of the centralized robust CIF (cRCIF) for tar-
get tracking with K VB iterations in Algorithm 11.1.

Algorithm 11.1 The cRCIF for target tracking
Require: 1∶T , x̂0|0, 𝑃0|0, 𝑄1∶T , 𝑅1∶T .
for t = 1 ∶ T do

Calculate {x̂t|t−1, 𝑃t|t−1} via {(11.9),(11.10)};
Calculate {𝛄t|t−1,𝚪t|t−1} via (11.11);
Initialize k = 0, ek

t,s, f k
t,s and ⟨zk

t,s⟩ = 1 for s ∈  ;
for k = 1 ∶ K do

Compute {𝐼k
t,s, 𝑖

k
t,s} via (11.27) with ⟨zk−1

t,s ⟩;
Compute {𝚪k

t|t, 𝛄k
t|t} via (11.28);

Compute {𝑃 k
t|t, x̂k

t|t} via (11.29);
Compute ⟨zk

t,s⟩ via (11.34), ek
t,s via (11.36), and f k

t,s via (11.37) for s ∈  ;
end for
x̂t|t = x̂K

t|t, 𝑃t|t = 𝑃 K
t|t.

end for
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11.4 Decentralized Robust Target Tracking

Although the centralized tracking scheme can fully utilize the information in mea-
surements and provide a performance benchmark, it has high communication
overhead and relatively low reliability as the fusion center potentially represents
a single point of failure. To deal with these challenges, we derive a decentralized
robust target-tracking algorithm, which integrates the consensus averaging with
outlier detection to achieve performance comparable to that of the centralized
tracking scheme. We start by briefly introducing the consensus strategy, followed
by developing a decentralized solution by considering both the outlier detection
and the consensus strategy.

11.4.1 Consensus Strategy

For the sake of clarity, we introduce the following operators:

⊕
a

(
𝜂a ⊙ pa(x)

)
≜

∏
a(pa(x))𝜂a

∫
∏

a(pa(x))𝜂a dx
, (11.38)

pa(x)⊕ pb(x) ≜
pa(x)pb(x)

∫ pa(x)pb(x)dx
, (11.39)

in which pa(x) and pb(x) are probability density functions (PDFs) with respect to
x, and 𝜂a > 0 is a weighting factor.

In the considered networked system, assume that the PDF of each node is
pn(x), n ∈ , and the consensus PDF is defined by the Kullback–Leibler average
of these PDFs of each node, i.e.

p(x) = arg inf
p(x)

∑
n∈

1
N

KLD
(

p(x)∥pn(x)
)
. (11.40)

Theoretically, p(x) is given by

p(x) = ⊕
n

( 1
N
⊙ pn(x)

)
. (11.41)

Apparently, calculating p(x), which requires the PDFs of all nodes, is intractable
since it is generally impossible for a node to acquire the PDFs of other nodes.
Therefore, we turn to compute p(x) at each node distributively in an iterative
manner, i.e.

lim
l→∞

pl
n(x) = p(x),n ∈ , (11.42)

where l is the iteration index. Specifically, the update of any node in each iteration
only relates to its own PDF and its neighbors’ PDFs. For the (l + 1)th iteration, the
consensus density at the nth node is given by

pl+1
n (x) = ⊕

j∈s

(
𝜋n, j ⊙ pl

j(x)
)
, (11.43)
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where 𝜋n, j is the consensus weight. We here employ the well-known Metropolis
weights,

𝜋n, j =

⎧⎪⎪⎨⎪⎪⎩

1
max {|n|, |j|} , n ∈ , j ∈ n, j ≠ n,

1 −
∑

j∈i ,n≠j
𝜋n, j, j = n,

0, others.

(11.44)

Other consensus weights, e.g. the constant weight, can also be employed.
In addition, if pl

j(x) follows a Gaussian distribution represented by its informa-
tion parameters 𝜸l

j and𝚪l
j, then pl+1

n (x) in (11.43) is also a Gaussian random variable
with its information parameters given by

𝚪l+1
n =

∑
j∈n

𝜋n, j𝚪l
j. (11.45)

𝜸
l+1
n =

∑
j∈n

𝜋n, j𝜸
l
j. (11.46)

In the tracking problem, each node has two kinds of information, i.e. the prior
information from the predicted density, and the innovation from the likelihood
density. Therefore, the consensus on the posterior density at each node involves
three steps: consensus on prior, consensus on likelihood, and fusing the consensus
results of the priors and likelihoods. In the following, we provide details of these
three steps.

11.4.2 Consensus on Prior

Due to the fact that the local prior distribution is independent of the outlier
detection procedure, achieving the consensus on the prior for the nth node can
be directly attained by the following L iterations:

pl
t|t−1,n(xt) = ⊕

j∈

(
𝜋n, j ⊙ pl−1

t|t−1, j(xt)
)
, (11.47)

where 𝜋n, j is the weight given by (11.44), and l = 1,… ,L represents the index
of the consensus step. It should be noticed that in (11.47), the predicted
density pt,n(xt|1∶t−1) is utilized to initialize p0

t|t−1,n(xt). Since pt,n(xt|1∶t−1)
follows a Gaussian, (11.47) can be calculated in a closed form. Specifically, the
pl

t|t−1,n(xt) ∼ ℕ((𝚪l
t|t−1,n)

−1𝜸l
t|t−1,n, (𝚪

l
t|t−1,n)

−1), where

𝚪l
t|t−1,n =

∑
j∈
𝜋n, j𝚪l−1

t|t−1, j. (11.48)

𝜸
l
t|t−1,n =

∑
j∈
𝜋n, j𝜸

l−1
t|t−1, j. (11.49)
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In (11.48) and (11.49), 𝜸0
t|t−1, j and 𝚪0

t|t−1, j are, respectively, initialized by 𝜸t|t−1, j and
𝚪t|t−1, j.

11.4.3 Consensus on Likelihood

Similarly, achieving consensus on likelihood can be accomplished through the fol-
lowing L-step iterations:

rl
t,n(xt) = ⊕

j∈

(
𝜋n, j ⊙ rl−1

t, j (xt)
)
, (11.50)

where r0
t,n(xt) is, depending on whether the node is a sensor node or a communi-

cation node, determined by

r0
t,n(xt) =

{
p(yt,n|xt), n ∈  ,

constant, n ∈ .
(11.51)

It is apparent that p(yt,n|xt) is not a Gaussian distribution because it depends on
the binary indicator variable zt,n. As a consequence, achieving the consensus on
likelihood (11.50) generally lacks a closed-form solution. Fortunately, given the
indicator zt,n, the likelihood function p(yt,n|xt, zt,n) is a Gaussian distribution.
The consensus on the likelihood step and the VB iteration is coupled because
the update of zt,n is within the VB iteration (see details in (11.30)). It should be
noticed that each sensor node performs outlier detection locally via a similar
procedure in the centralized robust tracking scheme. We therefore omit the
details of estimating zt,n.

With the updated zk
t,n, p(yt,n|xt, zk

t,n), i.e. the likelihood of the nth (n ∈ ) sensor
node, is given by

p(yt,n|xt, zk
t,n) ∝ exp

(
−1

2
(xT

t Ik
t,nxt − 2xT

t ik
t,n)
)
, (11.52)

where It,n and it,n are, respectively, given by

Ik
t,n = ⟨zk

t,n⟩Ht,nR−1
t,nHt,n, (11.53)

ik
t,n = ⟨zk

t,n⟩Ht,nR−1
t,n ỹt,n, (11.54)

in which Ht,n and ỹt,n are, respectively, can be found in (11.12) and (11.14). Since
a communication node does not provide measurements, its likelihood is in fact a
constant, meaning that at the kth VB iteration for the nth (n ∈ ) node, we have

Ik
t,n = 0, ik

t,n = 0. (11.55)

After obtaining the information terms through (11.53)–(11.55), consensus on
likelihood for the nth node can be achieved via the following L iterations:

Ik,l
t,n =

∑
j∈Nn

𝜅n, jI
k,l−1
t, j , (11.56)
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ik,l
t,n =

∑
j∈Nn

𝜅n, ji
k,l−1
t, j , (11.57)

with the following initialization:

Ik,0
t,n = Ik

t,n, ik,0
t,n = ik

t,n.

11.4.4 Fusing the Consensus Results

With the results of the consensus on prior and likelihood, the fusion result for the
nth node is given by

pt,n(xt) = pL
t|t−1,n(xt)⊕

(
𝛿t,n ⊙ rL

t,n(xt)
)
, (11.58)

where pL
t|t−1,n(xt) is from (11.47), rL

t,n(xt) is from (11.50), and 𝛿t,n is a parameter to
prevent the overweighting of innovations. In the conventional Kalman filter, the
fusion rule is similar to the one in (11.58) except that 𝛿t,n is set to 1. Therefore, 𝛿t,n
should be theoretically set to | | such that 𝜋L

t,n𝛿t,n = 1, where 𝜋L
t,s = 1∕| | when

L → ∞. In practice, however, L is relatively small because of the power supply
constraint and limited communication capacity of each node. The choice of
𝛿t,n = | | will cause performance degradation due to these practice issues.
Details can be found in Battistelli et al. [2014b]. A feasible distributed approach to
calculate 𝛿t,n is

𝛿t,n =
{

1, 𝜃L
t,n = 0,

1∕𝜃L
t,n, else,

(11.59)

where 𝜃L
t,n is iteratively computed via

𝜃l
t,n =

∑
j∈n

𝜋n, j𝜃
l−1
t, j , (11.60)

with the initialization value of 𝜃0
t,n being

𝜃0
t,n =
{

1, for n ∈  ,

0, for n ∈ ,

Substituting 𝛿t,n in (11.59) into (11.58) will solve pt,n(xt), which, clearly, is a Gaus-
sian random variable with the parameters being given by

Pk
t|t,n = (𝚪k

t|t,n)−1, (11.61)

xk
t|t,n = Pk

t|t,n𝜸k
t|t,n, (11.62)

where 𝚪k
t|t,n and 𝜸k

t|t,n are, respectively, computed by

𝚪k
t|t,n = 𝚪k,L

t|t−1,n + 𝛿t,nIk,L
t,n . (11.63)
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𝜸
k
t|t,n = 𝜸k,L

t|t−1,n + 𝛿t,nik,L
t,n . (11.64)

After updating the state via (11.63) and (11.64), the (k + 1)th step of the VB itera-
tion can proceed. For clarity, the resulting dRCIF for target tracking is summarized
in Algorithm 11.2. As can be seen in Algorithm 11.2, the dRCIF comprises three
main components: achieving the consensus on prior, achieving the consensus on
likelihood, and the VB iterations. The latter two components are coupled, with the
consensus on likelihood specifically integrated into the VB iterations. The compu-
tational complexity of the VB iterations depends on K, while that of the consensus
on prior or likelihood depends on L. Therefore, the computational complexity
of the dRCIF is approximately (𝜁2(L)) + (𝜍1(K))(𝜍2(L)), where 𝜍1(•) and 𝜍2(•)
are functions relative to their arguments. In addition, during the consensus step
(either on prior or on likelihood), the precise matrix (of dimensions n × n) and
the information vector (of dimensions n × 1) are shared. Therefore, considering
that the precise matrix is symmetric, K(n2 + 3n)∕2 real numbers are required to
broadcast from a node to its neighbors.

Algorithm 11.2 Decentralized robust CIF (dRCIF) for target tracking
Require: 1∶T , x̂0|0, 𝑃0|0, 𝑄1∶T , 𝑅1∶T , and L.
for t = 1 ∶ T do

Calculate {x̂t|t−1,n, 𝑃t|t−1,n} and {𝛄t|t−1,n,𝚪t|t−1,n} via (11.9)–(11.11) for n ∈ .
Calculate 𝐻t,n via (11.12) for n ∈  .
for l = 1 ∶ L do

Achieving consensus on prior via (11.48) and (11.49) for n ∈ ;
end for
Initialize k = 0, ek

t,n, f k
t,n and ⟨zk

t,n⟩ = 1 for n ∈  .
for k = 1 ∶ K do

Compute 𝐼k
t,n and 𝑖kt,n via (11.27) with ⟨zk−1

t,n ⟩ for n ∈  ;
Set 𝐼k

t,n = 0 and 𝑖kt,n = 0 for n ∈ ;
for l = 1 ∶ L do

Achieving consensus on likelihood as (11.56) and (11.57) for n ∈ ;
end for
Calculate the parameter 𝛿t,n for n ∈ ;
Update 𝚪k

t|t,n and 𝛄k
t|t,n via (11.63) and (11.64) for n ∈ ;

Compute 𝑃 k
t|t,n and 𝑥k

t|t,n for n ∈  ;
Update ⟨zk

t,n⟩ via (11.34), ek
t,n via (11.36), and f k

t,n via (11.37) for n ∈  ;
end for
Output 𝑃t|t,n = (𝚪K

t|t,n)−1, x̂t|t,n = 𝑃t|t,n𝛄K
t|t,n for n ∈ ,

end for
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11.5 Numerical Examples

In this section, we consider a scenario where a maneuvering target is tracked by a
networked sensing system. The networked system, the topology of which is illus-
trated in Figure 11.3, has 100 nodes consisting of 5 active sensor nodes, 10 passive
sensor nodes, and 85 communication nodes.

We consider a coordinated turning model with an unknown turning rate to
model the moving target, i.e.

xt+1 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
sin(𝜔tTs)

𝜔t
0

cos(𝜔tTs) − 1
𝜔t

0

0 cos(𝜔tTs) 0 − sin(𝜔tTs) 0

0
1 − cos(𝜔tTs)

𝜔t
1

sin(𝜔tTs)
𝜔t

0

0 sin(𝜔tTs) 0 cos(𝜔tTs) 0
0 0 0 0 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
xt + 𝒗t, (11.65)

where the state xt is defined as [xt, ẋt, yt, ẏt, 𝜔t]T , including the position (xt, yt), the
corresponding velocities (ẋt, ẏt), and the turning rate 𝜔t; Ts is the sampling time
which is set to 1s; and 𝒗t ∼ ℕ(0,Qt), where

Qt =
⎛⎜⎜⎜⎝
𝜙1Q 0 0

0 𝜙1Q 0
0 0 𝜙2

⎞⎟⎟⎟⎠ ,Q =

(
T3

s ∕3 T2
s ∕2

T2
s ∕2 Ts

)
, (11.66)
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Figure 11.3 The topology of
the considered SN.
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in which 𝜙1 = 10−1 and 𝜙2 = 1.75 × 10−4. In the simulation, the trajectory of the
target is generated by the dynamics (11.65) with the initial state randomly selecting
from x0 ∼ ℕ(𝝁,𝚺)where

𝝁 = [103 m, 5 × 10 m/s, 2 × 103 m,−5 × 10 m/s, 5.3 × 10−2 rad/s]T .

𝚺 = diag
(
[104, 102, 104, 102, 3.04 × 10−6]

)
.

Denote the location of the sth sensor node by (ps
x, ps

y). There are two types of
sensors in the networked system, i.e. the active sensors and the passive sensors.
The active sensor can provide both the range and bearing measurements, and its
measurement mapping is given by

ys
t =

[√
(xt − ps

x)2 + (yt − ps
y)2

atan2(yt − ps
y, xt − ps

x)

]
+𝒘s

t , (11.67)

where atan2 denotes the four-quadrant inverse tangent function, and 𝝎s
t is the

measurement noise. In contrast, the passive sensor only provides the bearing of
the target, i.e.

ys
t = atan2(yt − ps

y, xt − ps
x) +𝒘s

t . (11.68)

In the simulation, the measurements may be contaminated by outliers, and hence
we utilize the Gaussian mixture model for sensor nodes:

𝒘
s
t ∼ (1 − 𝜆)ℕ(0,Rs

t ) + 𝜆ℕ(0, 𝛼Rs
t ), (11.69)

where 𝜆 controls the probability of outliers, 𝛼 are parameters to describe the power
of outliers, and Rt is given by

Rt =
{

diag[102, 1.22 × 10−5], for the active sensor,
1.22 × 10−5, for the passive sensor.

In addition, the simulation length T is set to 50, and e0
t,s = 0.9 and f 0

t,s = 0.1.
To demonstrate the performance of the proposed cRCIF and the dRCIF, we com-

pare with the following existing solutions:

● The clairvoyant centralized CIF (cCIF-t): In this approach, the exact knowl-
edge of the measurement noise model (11.69) is known at the fusion center;

● The clairvoyant decentralized CIF (dCIF-t): In this method, each node is
assumed to know the exact measurement noise model (11.69);

● The robust decentralized CIF based on a student’s t distribution
(dTCIF) [Dong et al., 2018]: In this algorithm, we set the parameters as
recommended in Dong et al. [2018];

● The robust decentralized CIF based on the IMM (dIMMCIF) [Battistelli
et al., 2015]: Two models are considered in the dIMMCIF. In the first model,
𝒘

s
t is considered as ℕ(0,Rs

t ), while it is set to ℕ(0, 𝛼Rs
t ) in the second model.
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The probability transition matrix in the dIMMCIF is [0.9, 0.1; 0.9, 0.1]; and the
initial weights of these two models are 0.9 and 0.1, respectively.

The root mean-square error (RMSE) and the time-averaged RMSE (TRMSE)
of the target position are considered as the performance metrics, and these met-
rics are obtained by M = 100 independent Monte Carlo runs. In the centralized
target-tracking scenario, the definition of the RMSE of position is given by

RMSEt =

(
1
M

M∑
m=1

‖‖‖p(m)
t − p̂(m)

t
‖‖‖2
)1∕2

, (11.70)

where p(m)
t is the actual position of the target at the mth Monte Carlo run, while

p̂(m)
t is the estimated one. For the decentralized tracking scenario, the average

RMSE over the entire nodes is considered, i.e.

RMSEt =

(
1

NM

M∑
m=1

N∑
n=1

‖‖‖p(m)
t − p̂(m)

t,n
‖‖‖2

2

)1∕2

, (11.71)

where p̂(m)
t,n is the estimated target position of the nth node. The TRMSE of the

position is given by

TRMSE = 1
T

T∑
t=1

RMSEt (11.72)

First of all, we test how K (i.e. iteration number) of the VB affects the pro-
posed methods. Figure 11.4 illustrates the TRMSEs of the proposed robust tracking
methods as a function of K in the scenario that 𝜆 = 0.4 and 𝛼 = 100. The consensus
step of the dRCIF is set to L = 5, which we will discuss later. The results indicate
that our methods achieve a stable estimate after two or three VB iterations. There-
fore, we set the default number of the VB iterations in our methods to 3.

Table 11.1 presents the TRMSEs of decentralized algorithms with different
consensus steps. Since the dIMMCIF relies solely on consensus on likelihood
strategy, it necessitates more steps to achieve a reliable estimate. As expected,
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Figure 11.4 TRMSE of the position of the proposed methods when 𝜆 = 0.4 and 𝛼 = 100.
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Table 11.1 TRMSE of position for different algorithms with different consensus steps.

L = 1 L = 2 L = 3 L = 4 L = 5
dRCIF 29.17 19.07 14.58 12.67 11.51
dTCIF 39.53 28.17 21.44 17.90 16.22
dCIF-t 27.41 17.01 12.26 10.65 9.57

L = 6 L = 7 L = 8 L = 9 L = 10

dIMMCIF 39.53 29.0 21.26 20.43 19.49

performance improves with the increased consensus steps across all decentralized
fusion algorithms. Notably, our proposed dRCIF exhibits the smallest deviation
from the benchmark solution dCIF-t, followed by the dTCIF. Despite the dIMM-
CIF requiring more steps, it performs the poorest. In the following we set L = 10
for the dIMMCIF, while L = 5 for the others.

Finally, we investigate the impact of 𝜆 and 𝛼 on the proposed solutions.
Figure 11.5 displays the position TRMSEs of various target-tracking algo-
rithms for varying 𝜆 from 0.05 to 0.5, with 𝛼 = 100. In Figure 11.6, we present
similar results while fixing 𝜆 = 0.2 and varying 𝛼. From these figures, it is
apparent that the TRMSEs generally increase with 𝜆 for all algorithms, while all
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Figure 11.5 TRMSEs of position for the respective methods versus 𝜆 when 𝛼 = 100.
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Figure 11.6 TRMSEs of position for the respective methods versus 𝛼 when 𝜆 = 0.2.

except the dIMMCIF are nearly unaffected by the growth of 𝛼. This suggests that
these algorithms are responsive to changes in the contamination ratio but are
comparatively less affected by the intensity of the contaminating noise.

11.6 Conclusion

In this chapter, we addressed the robust target-tracking problem in networked
systems where measurements may be affected by outliers. We expanded the
traditional measurement model to incorporate potential outliers using a binary
variable that distinguishes between nominal readings and outliers. Addition-
ally, we introduced a beta-Bernoulli prior for the binary indicator, facilitating
simultaneous target tracking and indicator estimation within a VB framework.
Moreover, we devised a decentralized target-tracking approach by integrating
consensus averaging into the VB iteration process. Simulation results demon-
strated that our proposed solutions yield superior performance compared to
existing robust approaches.
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12.1 Introduction

With the goal of minimizing the loss of resources, the early detection of anomalies
is a relevant issue in smart cities (SCs). Among different challenges in monitored
environments, the efficient management of water [Kulkarni and Farnham, 2016],
energy [Ullah et al., 2017], and air pollution [Bacco et al., 2017] constitute valuable
examples of attractive solutions concerning the development of SCs.

In the context of water management for leak prevention, the authors Zaman
et al. [2020] have divided the leak management strategies into before pipeline
operation (hydraulic model assessment and structural methods) and after pipeline
operation (leak assessment, leak prevention, and leak detection). Moreover, the
study by Gupta and Kulat [2018] has evidenced that research on detecting leaks
in water distribution networks (WDNs) has been continuously conducted for over
two decades.

Furthermore, as detailed by Li et al. [2015], the leak detection solutions are
classified into hardware solutions (acoustic and non-acoustic) and software
solutions (numerical and non-numerical modeling). Regarding the hardware
solutions, the works by Senin et al. [2019] and Moubarak et al. [2011] have
extensively studied hardware-based strategies for water leakage detection,
including ground radar and acoustic solutions, respectively. In regard to software
solutions, the authors Chan et al. [2018] have reviewed high-powered solutions
grounded on non-numerical modeling, such as support vector machines (SVMs)
and convolutional neural networks (CNNs).

Wireless Sensor Networks in Smart Environments: Enabling Digitalization from Fundamentals to Advanced
Solutions, First Edition. Edited by Domenico Ciuonzo and Pierluigi Salvo Rossi.
© 2025 The Institute of Electrical and Electronics Engineers, Inc. Published 2025 by John Wiley & Sons, Inc.
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Despite the benefits obtained when using SVMs or CNNs, the study by Villmann
et al. [2017] has presented a comprehensive overview of prototype-based models
(PBMs) and highlighted their potential for producing more interpretative results
compared to nonlinear solutions. To this end, in this work, we explore the princi-
ples of PBMs rather than the ones from the more complex, but less interpretative,
aforementioned approaches.

In addition to the machine learning strategies context, the recent studies of
Soldevila et al. [2017] and Xing and Sela [2019] have confirmed the efficiency
of leakage detection modeling based on pressure analysis and machine-learning
techniques. Moreover, the authors Wan et al. [2022] have summarized the
state-of-the-art on pressure and flow WDN monitoring by smart sensor usage.
Among the listed data-driven studies, most of the proposed strategies have adopted
the frequency (in observations per minute) in the range from 1 to 15 minutes.

On the concern of data security for SCs solutions, the recent survey of Moubayed
et al. [2021] has summarized the state-of-the-art on water leakage detection strate-
gies and suggested potential research opportunities, including federated learning
(FL). FL is an emerging machine learning technique enabling multiple devices to
train a global model collaboratively without sharing their private data [Verbraeken
et al., 2020]. Therefore, FL is a candidate solution to address privacy concerns
associated with centralized machine learning.

Inspired by those reported successful cases, our objective is to propose an
efficient and low-complexity distributed solution for identifying potential leaks
in WDNs in municipal areas while ensuring the privacy of the hydraulic data.
Therefore, our solution is a federated modeling for detecting leakage in WDNs by
analyzing observed water pressure and flow data using low-complexity learning
strategies.

We extend our previous work Sousa et al. [2023], which has analyzed the pro-
posed study case using a centralized learning approach and only processed the
observed water pressure measurements. We further extend the previous analysis
by including flow measurements and, mainly, proposing a distributed approach.

Furthermore, we propose a solution that is independent of hydraulic modeling
and that focuses exclusively on the observed hydraulic measurements. As a
software-based approach, our proposition is applicable to leakage detection
setups where the measurement of hydraulic data at multiple locations within the
WDN is feasible. In this regard, we analyze water pressure and flow measure-
ments obtained from pumps within district-metered areas (DMAs) in Stockholm,
Sweden. To assess the effectiveness of our proposed solution, we concentrate on a
specific monitored subarea of the WDN.

Moreover, we create realistic and compact sets by using a reduced number of
prototypes for generating representative samples for fault detection/classification
of a monitored WDN. Specifically, we first train the prototypes to represent
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the observed hydraulic data into comprehensible subgroups. In the following,
we use the trained prototypes to process operational condition predictions.
Finally, we compare the performance between the distributed and centralized
approaches.

The remainder of this chapter is structured as follows. We present the formu-
lation of prototype-based learning (PBL) in Section 12.2. We briefly introduce the
concepts of federated learning in Section 12.3. Following that, we discuss our pro-
posed formulation for federated prototype-based models (FPBMs) in Section 12.4.
We describe our case study in Section 12.5. Finally, we discuss our results and
conclusion in Sections 12.6 and 12.7, respectively.

12.2 Prototype-Based Learning

PBL is a type of machine learning that constructs models based on representative
examples. As discussed in Kohonen [2013], PBMs are also denominated as compet-
itive learning algorithms within the field of artificial neural networks. Specifically,
the term “competitive” is related to the main principle of PBMs, which is the com-
petition among the available reference units (known as prototypes) to represent
input data partitions.

Algorithms from the PBL literature include supervised learning models, such as
the family of learning vector quantization (LVQ) algorithms [Nova and Estévez,
2014] and unsupervised learning models, such as the Kohonen’s self-organizing
map (SOM) [Miljković, 2017].

Usually, prototypes are created by selecting a subset of instances that are repre-
sentative of each class or category in the dataset. Then, the prototypes are updated
during a training stage. Finally, the prototypes are used to predict the class
(in supervised learning) or cluster (in unsupervised learning) of new instances
based on their similarity to the prototypes.

The similarity between instances is typically measured using a dissimilarity met-
ric, such as the Euclidean distance. The prototype that is closest to new instances
is used to predict the class label of those instances. Therefore, since it is possi-
ble to directly compare input data using prototypes, PBMs are known in machine
learning theory due to their potential of explicitly representing observations [Biehl
et al., 2016].

In the following, we give some necessary definitions for PBL meth-
ods. We denote  as the finite set of specified a priori R reference units,
 = {c1, c2,… , cr ,… , cR}, and each reference unit cr ∈ {c1, c2,… , cR} has an
associated reference vector wr ∈ ℝp, which represents its position (called recep-
tive field center) in the input space. Hence, the set of prototypes is formulated as
W[p×R] = [w1,w2,… ,wR], where the rth column of the matrix of prototypes W
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denotes the reference vector wr . Essentially, the problem of building prototypes
consists in finding these vectors wr that best represent a group of input data X.

The learning structures are designed through a data mapping (projection) from
the input space 𝜒 ∈ ℝp onto the set of R reference units. Thus, the overall training
procedure of competitive algorithms is grounded on the competition of the column
vectors of a given matrix W. Here, these reference vectors compete to represent
data regions of the data matrix X, formulated as X[p×N] = [x1, x2,… , xN ], with N
denoting the total number of input samples, where R ≪ N.

Specifically, the assignment of an input sample x ∈ X to a prototype originates
the competition among the reference units in , in the sense that they “compete”
to get an input sample assigned to them. The update rules of PBL algorithms are
based on the winner-takes-all (WTA) principle, in which only the winner(s) proto-
type(s) is(are) updated, and the losers do not forget what they have already learned.

Let us consider a trained matrix of prototypes W. Then, a useful computational
geometry concept is the Voronoi region [Boots et al., 2009]. For each reference unit
i ∈ , a Voronoi region Vi is the convex area of all samples x ∈ ℝp for which wi is
the nearest reference:

Vi =
{

x ∈ ℝp ∣ i = arg min
j=1,…,R

d(x,wj)
}
. (12.1)

Moreover, we define the Voronoi set i as the data in X for which i is the nearest
reference unit. Therefore, the data space is partitioned as

ℝp = V1 ∪ V2 ∪ · · · ∪ VR−1 ∪ VR and Vi ∩ Vj = ∅ for i ≠ j, (12.2)

where such a partitioning concept is valid for both unsupervised and supervised
paradigms.

In the following, we introduce the training procedures for the unsupervised and
supervised learning.

12.2.1 Unsupervised Learning

Since the PBL training procedures are established on iterative learning by means
of the reference units’ competition, we initiate by defining the concept of iteration.
In PBL, we denote as iteration a single stimulus provoked over the set of reference
units when we present an input sample x to this set. Hence, for a given tth iteration,
the competition is based on the following decision criterion:

cr(x(t),wr(t)) = arg min
i=1,…,R

d(x(t),wi(t)), (12.3)

in which d(•; •) denotes a dissimilarity measure specific to the PBL algorithm used,
and cr(•) ∶ ℝp ×ℝp → ℝ is the reference unit of the nearest (known as winner)
prototype among the R available.
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Algorithm 12.1: Winner-takes-all
1 initialize 𝐖,E,N, 𝜂0
2 i ← 0 (ith iteration), I ← E × N (number of iterations)
3 for each epoch e = 1,… ,E do
4 𝐱 ← randomPermutationSamples(N)
5 for each sample n = 1,… ,N do
6 i ← i + 1, 𝜂(i) = 𝜂0(

𝜂I
𝜂0
)i∕I

7 cr(i) ← argmin
j=1,…,R

∥ 𝐗(∶,𝐱(n)) −𝐖(∶,j)(i) ∥

8 𝐖(∶,r)(i + 1) ← 𝐖(∶,r)(i) + 𝜂(i)[𝐗(∶,𝐱(n)) −𝐖(∶,r)(i)]
9 end

10 end
11 return 𝐖

In general, unsupervised PBL algorithms are extensions of the WTA learning
rule [Kohonen, 1990a]:

wr(t + 1) = wr(t) + 𝜂(t)[x(t) − wr(t)],

wi(t + 1) = wi(t), if i ≠ r,
(12.4)

where 0 < 𝜂(t) < 1 is the learning rate.
The WTA algorithm is described in Algorithm 12.1. We denote X(∶,n) as the

nth column vector of X, E is the number of epochs, I is the number of iterations,
and 𝜂 is the decaying learning rate, where the initial and final rates are 𝜂0 and 𝜂I ,
respectively.

Some relevant unsupervised PBL algorithms are listed below respecting their
chronological order. We first outline the WTA algorithm [Kohonen, 1988], which
does not have a neighborhood function to update more than one winner prototype
per training iteration. The following two, frequency-sensitive competitive learning
(FSCL) [Ahalt et al., 1990] and rival penalized competitive learning (RPCL) [Xu
et al., 1993] present improvements to reduce the occurrence of underutilized
reference units. Finally, the SOM [Kohonen, 1990b], neural-gas (NG) [Martinetz
and Schulten, 1991], and growing NG [Fritzke, 1994] include improvements
by proposing neighborhood functions to preserve the existent geometry of the
reference units.

12.2.2 Supervised Learning

Let us consider a set of training input–output samples {(x(t), y(t))}N
t=1, where x(t) ∈

ℝp denotes the tth input sample, and y(t) ∈  denotes its corresponding class label.
Note that y(t) is a categorical variable, which assumes only one out of L values
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in the finite set  = {c1, c2,… , cL}. For the supervised PBL algorithms, we have
R > L, i.e. the number of prototypes (R) is higher than the number of classes (L).
As a consequence, different prototypes may share the same label.

For a given tth iteration, the class assignment for a new input sample x(t) is
based on the following decision criterion:

ŷ(t) = Class of wr(t), where r = arg min
i=1,…,R

d(x(t),wi(t)), (12.5)

in which d(•, •) denotes a dissimilarity measure specific to the supervised PBL
algorithm, and r is the index of the nearest prototype among the R available.
Concerning the supervised PBL algorithms, the learning rules are extensions of
the LVQ1 classifier [Kohonen, 1990a]:

wr(t + 1) =
{

wr(t) + 𝜂(t)[x(t) − wr], if ŷ(t) = y(t),
wr(t) − 𝜂(t)[x(t) − wr], otherwise.

wi(t + 1) = wi(t), if i ≠ r.
(12.6)

Supervised PBL algorithms are known in the literature as LVQ classifiers,
where the first contribution (LVQ1) was proposed by Kohonen [1988]. Since the
LVQ1 does not have a cost function that ensures convergence, diverse variants
have been produced to improve the original proposition, including LVQ2.1 and
LVQ3 [Kohonen, 1990a], with improvements to obtain higher convergence speed;
RLVQ [Bojer et al., 2001], the pioneer on using a distance learning approach; and
GLVQ [Sato and Yamada, 1996], the first one to introduce a cost function. For
an in-depth understating of the taxonomy of the LVQ variants concerning their
chronological order, we recommend the study by Nova and Estévez [2014].

12.3 Federated Learning

Federated learning is a machine learning technique that allows multiple devices to
collaboratively train a common global model without sharing their data with each
other or a central server. The goal of FL methods is to enable training of machine
learning models across multiple decentralized devices while preserving privacy
and reducing communication costs [Li et al., 2020]. Therefore, FL has a number
of benefits, including preserving the privacy of users’ data, reducing communica-
tion costs, and improving model accuracy by leveraging the diversity of data across
multiple devices. It is especially useful in scenarios where data cannot be central-
ized due to privacy or regulatory concerns, such as healthcare [Xu et al., 2021] or
finance [Long et al., 2020].

In FL, each kth device from k = 1,… ,K, such as a smartphone or a smart sensor,
has its own data that it uses to train the model locally. The local models are then
aggregated to create a global model that is more accurate across all classes than the
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individual models, while preserving the privacy of each device’s data. The process
of FL involves the following steps at a tth global iteration:

1) Initialization: A central server initializes the model and sends it to each par-
ticipating device k ∈ St, in which St denotes a random set of m selected clients.
The cardinality of St is in the range from 1 until K;

2) Local training: Each participating device trains the model on its own data
using its own resources during E local epochs;

3) Model aggregation: The local models are sent back to the central server,
where they are aggregated to create a more accurate global model;

4) Update and repeat: The updated global model is sent back to each device, and
the process is repeated until convergence.

The first FL method proposed in the literature was federated averaging
(FedAvg) [McMahan et al., 2017]. Since then, several extensions and contributions
to the original FedAvg method have been proposed in the literature, including
FL using differential privacy [Wei et al., 2020], fair FL [Li et al., 2019a], and
convergence analysis for non-iid data [Li et al., 2019b].

12.4 Federated Prototype-Based Models

FPBMs constitute a class of machine learning algorithms that are used for decen-
tralized training of models [Brinkrolf and Hammer, 2021]. For simplicity, it is a
combination of FL and PBL techniques.

As discussed in Section 12.2, PBL is a machine learning paradigm that reduces
the redundancy of the data by representing considerable amounts of data into lim-
ited quantity of reference units. In FPBMs, it is used to minimize the required
hyperparameters to be sent to the central server.

As discussed in Section 12.3, FL is a machine learning technique, where the
model is trained on a decentralized network of devices, without requiring the data
to be transferred to a central server. Instead, each device trains the model on its
own data and sends only the model updates back to the central server. This helps
to ensure privacy and security of the data.

On the concern of unsupervised FPBMs, the authors Servetnyk et al. [2020]
proposed a distributed clustering method based on a federated approach of the
SOM network, and the authors Servetnyk and Fung [2022] proposed a distributed
clustering method grounded on the distributed k-means++. Moreover, it is
valuable to emphasize that there are solutions that consider FL and clustering
methods but without prototypes-based modeling, e.g. the work by Kim et al.
[2021] introduced dynamic clustering in FL by proposing a generative adversarial
network-based clustering algorithm. Within the context of supervised FPBMs,
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federated learning vector quantization (FLVQ) is a relatively new machine
learning paradigm, where the work by Brinkrolf and Hammer [2021] is the first
one to use this terminology, and then the work by Vaquet et al. [2022] applied the
FLVQ to deal with the concept of drift between nodes.

To the best of our knowledge, there is limited literature available on the FBPM
topic. Overall, the limited literature on FPBMs suggests that they have potential
applications in decentralized and privacy-preserving machine learning. However,
further research is needed to explore the limitations and scalability of the FPBMs
for real-world applications. Therefore, this work concentrates on the problem
formulation of FPMBs by comprehensively defining an adequate terminology by
combining federated learning and prototype-based methods.

In particular, as it is also used in centralized PBL (see Section 12.2), we denote
N as total number of input samples, R as the number of reference units, p as the
number of features, E is the number of local epochs, and I is the number of local
iterations. We mean by local iteration the unitary local model updating step result-
ing from the iteration between a single input sample and the local model. Hence,
a single local epoch comprises N local iterations, and the total number of local
epochs demands E × N iterations. From the federated hyperparameters, we denote
K as the number of clients, Nk as the number of input samples in the kth client,
Xk as the input data matrix of the kth client, W as the global matrix of prototypes,
Wk as the local matrix of prototypes of the kth client, T as the number of global
iterations, 𝛼 is the ratio of device participation, and 𝜂 is the learning rate.

FPBMs work by first initializing a set of prototypes W(t = 0). These reference
units are used to represent different data regions. The participating devices then
train the model W(t) on their own data Xk and update the prototypes accordingly.
The updated prototypes Wk(t + 1) are then sent back to the central server, where
they are aggregated to form a global model W(t + 1). This procedure is summa-
rized in Algorithm 12.2 and minimizes the following cost function (t) formulated
by Servetnyk and Fung [2022]:

(t) =min
𝜇knr ,wr

∑
k∈K

∑
n∈Nk

∑
r∈R

1
2
𝜇knc||xkn − wr(t)||2

s.t.
∑
k∈K

𝜇knr = 1, k ∈ K,n ∈ Nk, r ∈ R, 𝜇knr ∈ [0, 1],
(12.7)

which denotes the sum of the squared errors (SSEs) obtained of the samples of all
participating clients when using the global model W(t). Moreover, all the PBMs
listed in both Section 12.2.1, such as WTA, and Section 12.2.2, such as LVQ1, can be
adopted in the function named ClientUpdate in Algorithm 12.2. To contextualize
the local training, we present the ClientUpdate function when adopting the WTA
learning scheme in Algorithm 12.3.
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Algorithm 12.2: Federated prototype-based models
1 Server executes:
2 initialize 𝐖(t = 0)
3 for each round t = 1,… ,T do
4 m ← max(𝛼(t) × K, 1)
5 St ← random set of m clients
6 for each client k ∈ St do
7 𝐖k(t + 1) ← ClientUpdate(𝐗k,𝐖(t))
8 end
9 𝐖(t + 1) ←

∑K
k=1

Nk
N
𝐖k(t + 1)

10 end
11 return 𝐖

Algorithm 12.3: ClientUpdate based on Winner-Takes-All algorithm
1 i ← 0 (ith local iteration)
2 Ik ← E × Nk (number of local iterations)
3 Client k receives 𝐖(t) from Server
4 if t = 0 then
5 initialize 𝐖k(i)
6 end
7 else
8 𝐖k(i)=𝐖(t)
9 end

10 for each local epoch e = 1,… ,E do
11 𝐱 ← randomPermutationSamples(Nk)
12 for each sample n = 1,… ,Nk do
13 i ← i + 1
14 cr(i) ← argmin

j=1,…,R
∥ 𝐗k(∶,𝐱(n)) −𝐖k(∶,j) (i) ∥

15 𝐖k(∶,r) (i + 1) ← 𝐖k(∶,r) (i) + 𝜂(i)[𝐗k(∶,𝐱(n)) −𝐖k(∶,r) (i)]
16 end
17 end
18 return 𝐖k(Ik)

Furthermore, we illustrate the entire training process of FPBMs in Figure 12.1.
Note that we represent full device participation by using continuous lines con-
necting the devices to the demultiplexer and multiplexer operators located at the
input and output of the Server, respectively. However, we can delineate partial
participation scenario if we substitute some of those continuous lines to dotted
ones. Fundamentally, the dotted lines would denote the inactive devices.



282 12 A Federated Prototype-Based Model for IoT Systems

Server
Aggregate

local updates

Send
global
model

Device 1Train local model

Update
local

model

Device K Train local model

Update
local

model

Device K-1Train local model

Update
local

model

Device 2 Train local model

Update
local

model

WK(t)

W(K–1)(t)

W(K–1) WK

W2(t) W

W1(t) W(t + 1)

W1 W2

+++++++++++++++++++++++++++++++++++++

1 2

K(K–1)

Figure 12.1 Federated learning scenario with K devices and a server. Federated learning
scenario with K devices and a server. Note in this representation, we assume full device
participation during the training of the global model. Source: The authors.

In the partial participation scenario, we only consider the active devices at a
given tth global iteration instead of the K existing. In particular, the active devices
are the ones that belong to the set St. Hence, only those devices are updated and
participate in the training of the global model along the tth global iteration.

12.5 Case Study: Water Distribution Network
in Stockholm

In this case study, we consider a set of water pressure and flow observations from
the WDN of the municipality of Stockholm, Sweden. The water pressure and flow
observations represent the pumping stations of the WDN operating in normal
and faulty (presence of leakage) working conditions, where these conditions are
distinguished through a maintenance report. In particular, the adopted dataset
was gently provided by the water and wastewater company of Stockholm (SVOA,
Stockholm Vatten och Avfall), and the company has been continuously storing
new observations.

12.5.1 Dataset Description

In details, the shared data includes water measurements collected from January
2018 to March 2019. Particularly, we analyze a DMA of the WDN that corresponds
to a residential area that has a total of four pumping stations. Moreover, there
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Table 12.1 Number of observed days per working condition

Year

2018 2019 Total

Normal 324 70 394
Leakage 34 20 54
Total 358 90 448

Source: Sousa et al. [2023]/IWA Publishing.

are no tanks or reservoirs in the monitored area and the population of the area is
70,250. As a consequence that leaks in WDNs constitute anomalous working con-
ditions, it is valuable to empathize that most of the observations are categorized as
normal working conditions. This imbalance is shown in Table 12.1.

Due to a privacy agreement with SVOA, we neither describe the network archi-
tecture nor reveal sensitive information of the DMA. Hence, we generically label
these pumping stations as A, H, K, and S.

In the hydraulic dataset, the flow and pressure data are stored for entire days of
acquisition with a one minute sampling frequency. Considering the raw database,
we denote by sample a flow and a pressure time series concatenated, where
both signals are stored as a vector of 1440 components for each station and
each day. Moreover, there are 7 days with excessive missing values in the time
series during the 15-month mentioned period. For simplicity, we remove these
non-representative samples from this analysis. Therefore, there are 448 available
observed days to build the predictive model, and the total number of samples is
denoted by N = 448.

Let pn,i = [p1,n,i,… , p1440,n,i]T and fn,i = [f1,n,i,… , f1440,n,i]T denote the 1440
pressure and flow measurements from pump i ∈ {A,H,K, S} during the nth
observation day for n = 1,… ,N. Then, the sample that represents the nth day
is denoted by Sn = [pn,A, fn,A;pn,H , fn,H ;pn,K , fn,K ;pn,S, fn,S], which has 2880 rows
and 4 columns.

Figures 12.2 and 12.3 illustrate the stored pressure and flow time series at each
pump station separated by each working condition. From these figures, we note
that there is a notable correlation between the normal and faulty (presence of leak-
age) operation conditions on the selected stations. Therefore, for effective data
analysis, the hydraulic data must be treated from raw data to extracted data, where
the observations are mapped to a set of representative feature vectors.

Furthermore, a major characteristic of samples collected from distinct sources,
such as distinct pumping stations, is that we are supposed to obtain different
data distributions at each source. Accordingly, Figures 12.4 and 12.5 illustrate the
occurrence of this phenomenon. Consequently, for a successful data analysis, the
hydraulic data must be treated in a distributed manner.
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Figure 12.2 Pressure time series. Stored daily water pressure time series for each pump and working conditions (in meters of water
column). Source: Sousa et al. [2023]/IWA Publishing.



800

700

600

500

400

300N
or

m
al

200

100

0
0 500 1000

Time step (in minutes)

Pump A
400

350

250

200

150

100

50

0

300

0 500 1000
Time step (in minutes)

Pump H
400

350

250

200

150

100

50

0

300

0 500 1000
Time step (in minutes)

800

700

600

500

400

300

200

100

0
0 500 1000

Time step (in minutes)

Pump K Pump S

800

700

600

500

400

300Le
ak

ag
e

200

100

0
0 500 1000

Time step (in minutes)

400

350

300

250

200

150

100

50

0
0 500 1000

Time step (in minutes)

400

350

300

250

200

150

100

50

0
0 500 1000

Time step (in minutes)

800

700

600

500

400

300

200

100

0
0 500 1000

Time step (in minutes)

Figure 12.3 Flow time series. Stored daily water flow time series for each pump and working conditions (in m3∕h). Source: The authors.
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column) at each pump. Source: The authors.
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12.5.2 Feature Extraction

To generate suitable feature vectors that represent the proposed engineering appli-
cation, we apply canonical discriminant function on the original signals aiming
to obtain linear combinations of the interval variables, known as canonical vari-
ables, that summarize between-class variation. Further explanation of canonical
analysis is given in Rencher [1992].

Thus, the procedure for building the feature vectors comprises the following
eight steps:

1) Define the acquisition period and the sampling rate.
2) Read the hydraulic, pressure or flow, signals from a selected station.
3) Separate the samples according to their corresponding labels, such as normal

and leakage.
4) Calculate the within-group Wg and between-group Bg scatter matrices (see def-

inition in Rencher [1992]).
5) Find the eigenvector v1[1×𝜌] associated to the largest eigenvalue of the matrix

W−1
g Bg, in which 𝜌 = 1440 denotes the number of components of the raw

hydraulic signal.
6) Obtain the projected data p̂ by applying the inner product between v1 and the

raw data matrix X:

p̂[1×N] = v1[1×𝜌]X[𝜌×N]; (12.8)

7) Repeat the steps 2–6 for the remaining pump stations.
8) Finally, concatenate every projected data for pumps A, H, K, and S:

D =
[
p̂T

A|p̂T
H|p̂T

K|p̂T
S
]
. (12.9)

In summary, the treated dataset D is comprised of 448 four-dimensional
labeled feature vectors, in which the attribute values represent the canonical
values obtained from the most representative canonical function. We execute
this procedure to each hydraulic feature, and then we concatenate both treated
pressure dataset Dp = [Dp(A)|Dp(H)|Dp(K)|Dp(S)] and treated flow dataset
Df = [Df (A)|Df (H)|Df (K)|Df (S)] to generate the treated hydraulic dataset H as:

H[448×8] =
[
Df |Dp

]
. (12.10)

12.5.3 Dataset Settings

For the federated framework, the hydraulic features are distributed among the
pumping stations, while the centralized framework considers all the features.
We hypothesize that the federated framework can further improve the recognition
rates, including scenarios in which each pump has only part of the available
information.
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In this work, we specify the decentralized and centralized datasets as follows. We
define each pumping station of the WDN as a device. Moreover, we set the number
of features p as two, denoting the canonical values of the pressure and flow of each
device. Therefore, we set the number of devices K as four, the number of samples of
the kth device Nk as 448 for every device, and the total number of samples as 1792.

Hence, the decentralized and centralized datasets are built as follows. We denote
the decentralized datasets as i for i ∈ {A,H,K, S}, and the centralized dataset as
C. According to the treated hydraulic dataset H, we define the decentralized and
centralized datasets as

A[448×2]
= [Df (A)|Dp(A)], H[448×2]

= [Df (H)|Dp(H)],

K[448×2]
= [Df (K)|Dp(K)], S[448×2]

= [Df (S)|Dp(S)],

andC[1792×2]
= [A;H ;K ;S].

(12.11)

12.6 Results and Discussions

In this section, we evaluate the proposed federated machine learning framework
to analyze the real dataset for leakage detection, whose operational conditions
are represented as N (normal) and L (leakage). Moreover, we compare the perfor-
mance of the proposed FPBM algorithm with the results obtained when applying
the conventional centralized learning paradigm. Specifically, our proposed FPBM
is an extension of the PBM WTA algorithm. Therefore, we represent the standard
PBM as centralized WTA and our proposed FPBM as federated WTA.

12.6.1 Numerical Results

We execute 100 independent runs of both centralized and federated clustering
algorithms. For each run, three steps of the proposed methodology are carried
out: (i) canonical discriminant analysis of the training set for each pumping sta-
tion, (ii) training of the matrix of prototypes, and (iii) evaluation of the clustering
procedure. At the end of each run, the purity rate of each learning framework is
obtained. Specifically, we label each cluster according to the class that appears
most frequently within it. Consequently, the purity rate denotes the ratio of the
correctly matched class and cluster labels to the total of data samples.

We examine our empirical results considering full device participation. It
means that all pumping stations participate in the aggregation step. We consider a
maximum of T = 800 global iterations and then return the global solution W(T).
In addition, we set the total number of local epochs E as 10, the total number
of prototypes R as

√
Nk

2
≈ 10, and the learning rate of the kth pumping station

as 𝜂k(i) =
2

i×Nk
, where i = 1,… , Ik denotes the ith iteration of the WTA along the
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local training. Note that Ik = E × Nk denotes the total number of WTA iterations
of the kth pumping station on an entire single global iteration.

For all federated experiments, we start by randomly selecting five N samples and
five L samples from the kth pumping station to build the initial kth local model,
Wk(t = 0). For the centralized framework, we randomly select those N and L sam-
ples from the centralized dataset to build the initial model, W(t = 0).

12.6.2 Validation of the Canonical Discrimination Function

We begin our analysis by validating the canonical discriminant function, which
is the technique we use to extract relevant information from the raw flow and
pressure time series. We consider all pressure and flow samples of each pump
to generate the treated hydraulic dataset H. For this scenario, we obtain the
class separation as shown in Figure 12.6. In this figure, the N and L samples are
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Figure 12.6 Samples representation according to their operational conditions.
Operational conditions separation obtained if we use all samples of the raw dataset to
generate the treated hydraulic dataset H. Note that here the light and dark gray colors
represent the normal and leakage samples, respectively, while the four symbols represent
the pump to which the sample belongs to. Source: The authors.
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represented by the light and dark gray colors. As observed in the scatter plot,
the proposed strategy is able to generate explainable separations between the
contrasting operational conditions.

12.6.3 Minimization of the Cost Function

Then, we proceed with our analysis by validating the FED-WTA algorithm by the
means of their capability to minimize the cost function formulated in Eq. (12.7).
The cost functions of the two frameworks along the training for the 100 indepen-
dent runs are shown in Figure 12.7. From this figure, we note that the centralized
WTA is the option that generated the largest dispersion of the MSE among the
independent runs, i.e. it is the least reliable. Meanwhile, the federated WTA consis-
tently provides lower values of MSE along the training. Specifically, the centralized
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Figure 12.7 MSE obtained along the global iterations. The cost functions obtained from
the federated and centralized frameworks along the training for 100 independent runs.
The light and dark gray curves represent the federated WTA and centralized WTA cost
functions, respectively. In addition, the continuous curves denote the median values of
MSE along the training of each framework. Moreover, the dotted curves illustrate the
superior and inferior boundaries of the second quartile values of MSE, respectively.
Source: The authors.
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Figure 12.8 Purity rate performance. Purity rate performance obtained by the evaluated
clustering paradigms. Source: The authors.

WTA generated a mean variance of 1.4592 × 10−4, while the FED-WTA generated
a mean variance of 3.4618 × 10−5.

12.6.4 Analysis of the Clustering Performance

The statistical performance of each clustering method is shown in Figure 12.8.
A closer look at these metrics reveals a small increase over the maximum purity
rates in comparison with the centralized approach, in which every pumping sta-
tion presents higher performance when using the global model. Specifically, the
maximum purity rates improved 0.6% in pumps A, K, and S, and 0.4% in pump
H. For the minimum purity rates, we observe a considerable increase in the fed-
erated framework, in which it improved 7.6% in pump A, 7.3% in pump S, and
7.1% in pumps H and K. In addition, we verify that for the federated scenario,
there is a substantial difference of performance among the participating pumps,
where pump A is the one with the best statistical results, e.g. 99.78% and 99.11%
regarding the median and minimum purity rates, respectively, while pump H is
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the one with the worst performance, e.g. 99.33% and 98.66% regarding the median
and minimum purity rates, respectively.

12.6.5 Analysis of the Voronoi Regions

A major characteristic of PBM, such as the centralized WTA, is that we are able
to check the Voronoi regions in order to have a notion on how the classes are
distributed among the prototypes. Therefore, to verify the samples separation
obtained when using the global model at the Tth iteration, we illustrate the
Voronoi regions for a given running of the WTA frameworks in Figures 12.9
and 12.10. From these figures, we observe that the federated framework generated
better classes separation than the centralized one. Therefore, we consider the
federated approach as the preferable learning framework due to the higher cluster
purity rates obtained from the proposed federated solution method. Moreover,
the FED-WTA provided a solution that preserves the privacy of the pumping
stations.
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Figure 12.9 Centralized Voronoi cells. Voronoi cells generated when using the
centralized WTA at a given run. Source: The authors.
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Figure 12.10 Federated Voronoi cells. Voronoi cells generated when using the proposed
federated solution at a given run. Source: The authors.

12.7 Conclusions

In this work, we proposed a distributed algorithmic solution for water leakage
detection in WDNs through the analysis of observed hydraulic data by means of
emerging machine learning strategies. To evaluate our solution, we considered
real world data from water pressure and flow measurements from pumps in a
residential DMA of the WDN of Stockholm, Sweden.

We proposed a low complexity machine-learning framework for leakage detec-
tion. Specifically, our methodology used techniques from prototype-based learning
and federated learning paradigms. For the numerical experiments of our proposed
solution, we used real dataset from a DMA in Stockholm, Sweden.

The numerical findings showed the viability and potential benefits of combin-
ing PBL and FL. Specifically, we obtained better purity results for all pumping
stations in the federated learning than the centralized learning scheme. Although
our analysis are constrained to FED-WTA, we hope that our insights can inspire
future work established on other FPBMs.
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For those interested in exploring further, there are several key papers that pro-
vide valuable insights into related areas. For a comprehensive understanding of the
concept of explainability regarding machine learning solutions, we recommend
the studies by Verma et al. [2020], Zhou et al. [2021], and Burkart and Huber
[2021]. Lastly, for those looking into challenges and solutions of WDNs opera-
tions in the machine learning context, the work by Artelt et al. [2024] introduces
a promising Python toolbox for supporting the modeling of complex scenarios to
handle diverse operational conditions of WDNs.
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Multi-Agent Inverse Learning for Sensor Networks:
Identifying Coordination in UAV Networks*
Luke Snow and Vikram Krishnamurthy

Department of Electrical and Computer Engineering, Cornell University, Ithaca, NY, USA

13.1 Introduction

In strategic environments, autonomous systems such as unmanned aerial vehicles
(UAVs) are becoming ubiquitous for reconnaissance, surveillance, and combative
purposes. Often, such autonomous systems are deployed in groups, e.g. UAV
swarms, in order to collect information more efficiently or multiply the combative
force. Furthermore, these multi-agent intelligent systems typically have sophisti-
cated sensors and communication capabilities, which allow them to respond in
real time to an adversary’s probe, e.g. radar tracking signals. This results in a
strategic interaction between the multi-agent system and the adversary; the study
of this interaction at the physical layer, for instance analyzing electromagnetic
suppression techniques, is typically referred to as “electronic warfare.”

We consider a multi-agent strategic interaction scenario in which a radar is
tracking a network of UAVs. We take the perspective of the radar and ask how
can we detect coordination in the UAV network? Such coordination detection
would not only allow us to understand the functionality of the network, but
when combined with estimates for the UAV objectives would allow us to predict
future network behavior. Thus, the second question we ask is: if the network
is coordinating, how can we reconstruct individual objective functions, which
induce the observed aggregate behavior?

We study this problem at a higher level of abstraction than traditional electronic
warfare investigations; this allows us to formulate the “coordination” problem as
a general linearly constrained multi-objective optimization. Then, the problem of

* This research was funded by NSF Grant CCF-2312198 and Army Research Office Grant
W911NF-21-1-0093.

Wireless Sensor Networks in Smart Environments: Enabling Digitalization from Fundamentals to Advanced
Solutions, First Edition. Edited by Domenico Ciuonzo and Pierluigi Salvo Rossi.
© 2025 The Institute of Electrical and Electronics Engineers, Inc. Published 2025 by John Wiley & Sons, Inc.
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detecting coordination and reconstructing feasible objective functions becomes
that of inverse multi-objective optimization. We present several tools from micro-
economic theory, which allow us to accomplish this inverse learning problem
efficiently. While this microeconomic interpretation is conceptualized at a higher
level of abstraction than traditional electronic warfare procedures, we also present
how this framework arises naturally from physical-layer considerations, such as
radar waveform modulation and multi-target filtering algorithms.

This chapter is organized as follows. Section 13.2 presents the mathematical
details of (forward and inverse) multi-objective optimization and presents
the microeconomic tools, which can be used to accomplish general inverse
multi-objective optimization. Then, Section 13.3 presents the UAV network
coordination detection procedure. First, the radar – UAV network interaction
dynamics are specified, then it is shown how the microeconomic interpretation
arises from filtering-level tracking considerations. Finally, in Section 13.4, we
present the application of the microeconomic tools from Section 13.2 to the
coordination detection problem.

13.2 Multi-Objective Optimization and Revealed
Preferences

In order to characterize conditions under which coordination can be detected
by an outside observer, one much precisely define what is meant by coordi-
nation in the first place. Notions of coordination have appeared in, e.g. Chen
et al. [2020], Quintero et al. [2010], and Wise and Rysdyk [2006]. We utilize a
well-motivated and widely used framework to define coordination, known as
multi-objective optimization. In this section, we present the mathematical details
of multi-objective optimization and inverse multi-objective optimization and
give a microeconomic result, allowing us to achieve the latter efficiently. The
application of these frameworks to the UAV coordination detection problem will
be detailed in Sections 13.3 and 13.4.

13.2.1 Multi-Objective Optimization

Here, we outline what distinguishes multi-objective optimization from single-
objective optimization and provide the resultant generalized notion of a solution
concept.

13.2.1.1 Multi-Objective Problem
We consider a system composed of multiple autonomous agents. Each agent has
an individual utility function that captures their objective and aims to act in a way
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that maximizes their utility function. In order to capture a notion of coordination,
it is assumed that there is a joint constraint on the actions taken, such that both the
set of all actions, which can be taken by a particular agent and the resultant utility
achieved by this agent, are dependent on the actions taken by all of the agents.
This coupling forces the set of all agents to jointly consider the actions taken in
order to achieve individual objectives.

13.2.1.2 Multi-Objective Solution Concept
The reader may realize that this is also the setting of game theory, where a stan-
dard investigation is that of non-cooperative agents acting solely in self-interest.
The classical solution concept in non-cooperative game theory is that of Nash
Equilibrium, where no agent can gain in their utility by unilaterally deviating
(changing their action). We distinguish this from the cooperative solution concept
in multi-objective optimization that of Pareto-optimality. Pareto optimality occurs
when no agent can gain in their utility by unilaterally deviating (changing their
action) without simultaneously decreasing the utility of another agent. So, an
individual agent could feasibly change their action to increase their utility, but
this would come at the expense of decreasing another agent’s utility. Thus, a
Pareto-optimal solution captures a notion of coordination since the agents do not
act in complete self-interest but act in order to maximize the entire set of utility
functions.

13.2.2 Inverse Multi-Objective Optimization

13.2.2.1 Inverse Multi-Objective Problem
Now that the multi-objective problem has been conceptualized, one may ask:
given a dataset of actions, how can it be determined if the group is behaving
in a Pareto-optimal manner? This general problem is denoted as inverse
multi-objective optimization and originated from the recovery of decision process
structures in microeconomic group behavior analysis [Chiappori and Ekeland,
2009]. More specifically, in inverse multi-objective optimization, we aim to
determine if there exist individual utility functions for which the actions are
multi-objective optimal. If so, we aim to reconstruct such utility functions in
order to better understand or predict the system dynamics. A key framework for
accomplishing this will be that of microeconomic revealed preferences.

13.2.2.2 Revealed Preferences
The microeconomics literature contains the most well-developed formulations
of such inverse multi-objective optimization, nominally “Group Revealed
Preferences.” The Revealed Preferences paradigm dates back to seminal work
[Afriat, 1967], where utility maximization behavior is detected from consumer
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budget-expenditure data. The Group Revealed Preferences [Cherchye et al., 2011]
formulation extends these works to the multi-agent scenario, giving necessary and
sufficient conditions for group behavior to be consistent with multi-objective opti-
mization. Furthermore, a methodology is provided for reconstructing feasible util-
ity functions under which the observed behavior is multi-objective optimal. This
allows for inference of multi-agent group motives or prediction of future behavior.

13.2.3 Outline

In the rest of this section, we make the above concepts more mathematically
precise: we first outline the mathematics of multi-objective optimization, then
provide the relevant framework for inverse multi-objective optimization, given
by the micro-economic Group Revealed Preference formulation. In Sections 13.3
and 13.4, we utilize these mathematical tools in the UAV coordination detection
problem.

13.2.4 Multi-Objective Optimization

In this section, we introduce the multi-objective optimization problem we will
consider, then present its solution concept of Pareto-optimality, and discuss how
Pareto-optimal solutions can be obtained.

13.2.4.1 Multi-Objective Problem
We consider M ∈ ℕ agents. We denote 𝛽 ∈ ℝn a general joint action taken by all
agents. For example 𝛽 can represent a vector containing distinct actions taken by
each agent, or it can represent a single action that has been agreed upon by the
set of agents. Each agent i ∈ [M] ∶= {1,… ,M} has a utility function f i ∶ ℝn → ℝ,
representing agent i’s utility gained from the joint action taken.

This setting is sufficiently general to capture standard game-theoretic notions.
For instance, in non-cooperative Game Theory, the joint action 𝛽 can represent the
set of distinct actions taken by each agent. Then solution concepts such as Nash
Equilibria, where no agent has an incentive to unilaterally deviate from its action,
can be studied.

Our focus in this setting will instead be on a notion of multi-agent coordination,
given by a particular linearly constrained multi-objective optimization:

Linearly Constrained Multi-Objective Optimization

arg max
𝛽

{f 1(𝛽),… , f M(𝛽)}

s.t. 𝛽 ∈ Xc ∶= {𝛾 ∈ ℝn ∶ 𝛼′𝛾 ≤ 1},
(13.1)
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Equation (13.1) encodes the idea that the agents must cooperate such that
joint action 𝛽 maximizes over all objective functions f i, provided 𝛽 is in a linear
constraint set 𝛼′𝛽 ≤ 1 formed by constraint vector 𝛼. The linear constraint 𝛼′𝛽1 is
bounded by 1 without losing generality (see Section I-A of Krishnamurthy et al.
[2020]).

The astute reader may at this point ask what precisely is meant by the maximiza-
tion in (13.1). Indeed, it turns out that we need to introduce a generalized notion
of optimality in order for this maximization to be well-posed.

13.2.4.2 Multi-Objective Solution Concept: Pareto Optimality
In single-objective optimization, the goal is to find a feasible argument, which
maximizes the objective, in that the objective evaluated at this argument is
greater than or equal to the objective evaluated at any other point in the feasible
set. A naive generalization of this to the multi-objective setting might be to find
an argument, which maximizes all objectives. However, unless there are very
tight restrictions on the objective function structures (e.g. all the same function
or all one-dimensional and monotone), there will seldom exist an argument 𝛽,
which simultaneously maximizes all objectives. Thus, there will be tradeoffs
between objectives for varying argument 𝛽. The general solution concept for
the multi-objective optimization problem (13.1) that captures these tradeoffs is
instead that of Pareto optimality:

Definition 13.1 (Pareto Optimality) For fixed {{f i(⋅)}M
i=1, 𝛼} and a vector

𝛽 ∈ Xc = {𝛾 ∈ ℝn ∶ 𝛼′𝛾 ≤ 1}, let

Zt(𝛽) = {𝛾 ∈ Xc ∶ f i(𝛾) ≥ f i(𝛽) ∀i ∈ [M]}

Y t(𝛽) = {𝛾 ∈ Xc ∶ ∃k ∈ [M] ∶ f k(𝛾) > f k(𝛽)}.

The vector 𝛽 is said to be Pareto-optimal if

Zt(𝛽) ∩ Y t(𝛽) = ∅, (13.2)

where ∅ denotes the empty set.

In words, a vector 𝛽 is Pareto-optimal if there does not exist another vector 𝛾
in the feasible set Xc, which increases the value of some objective f i(⋅) without
simultaneously decreasing the value of some other objective f j(⋅), i, j ∈ [M].

This is a well-motivated and nontrivial conception of cooperative optimality in
multi-agent systems [Marden et al., 2014; Ràdulescu et al., 2020]. It captures the
idea that even if a single agent may gain by deviating from the Pareto-optimal joint
action, it does not do so since that gain would come at the expense of another agent.

1 For vector x, we let x′ represent the transpose of x.
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From another perspective, if a joint action is not yet Pareto-optimal, it means that it
can be altered such that no agents’ utility decreases, and at least one agent’s utility
increases. Such an alteration may have to be undertaken by a certain agent who
gains nothing by changing their action but does so in order to increase the utility of
a different agent. Thus, achieving the Pareto-optimum conceptually corresponds
to all agents simultaneously acting for the best of the entire group.

In general, there will be a set of Pareto-optimal solutions, some benefiting cer-
tain individual agents more than others, but all maximizing the utilities of the
entire group in the above-described sense.

Definition 13.2 (Pareto Frontier) The set of all Pareto-optimal solutions to
the problem (13.1) is known as the Pareto-frontier and is denoted

XPF({f i}M
i=1, 𝛼t) ∶= {𝛽 ∈ Xc ∶ (13.2) is satisfied}. (13.3)

Now, we say that 𝛽 solves (13.1) if and only if 𝛽 is Pareto-optimal, i.e.

𝛽 ∈ {arg max
𝛾

{f 1(𝛾),… , f M(𝛾)} s.t. 𝛾 ∈ Xc} ⟺ 𝛽 ∈ XPF({f i}M
i=1, 𝛼).

13.2.4.3 Computing Pareto Optimal Solutions
We have discussed the multi-objective optimization problem and its solution con-
cept of Pareto-optimality. The question remains: given joint-action constraints and
individual utility functions, how can one (or the multi-agent group itself) actually
compute Pareto-optimal solutions? Here, we show how Pareto-optimal solutions
can be obtained by simply maximizing linear combinations of objective functions
{f i}M

i=1 subject to the linear constraint 𝛼′𝛽 ≤ 1.
Before presenting this result, we need to introduce some notation. Let

𝜇 = (𝜇1,… , 𝜇M)′ ∈ ℝM
≥0 be a set of real-valued weights on the non-negative unit

simplex M , defined as

M ∶= {𝜇 ∈ ℝM
≥0 ∶ 𝟏′𝜇 = 1}. (13.4)

Also let


+
M ∶= {𝜇 ∈ ℝM

+ ∶ 𝟏′𝜇 = 1} ⊂M , (13.5)

be the set of strictly positive weights. Let us denote

S(𝜇) ∶=

{
𝛽 ∶ 𝛽 ∈ arg max

𝛾

M∑
i=1
𝜇if i(𝛾) s.t. 𝛼′𝛾 ≤ 1

}
i.e. S(𝜇) is the set of all vectors 𝛽 maximizing a linear combination of objective
functions {f i} with weights 𝜇, such that the linear constraint 𝛼′𝛽 ≤ 1 is satisfied.
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Then, we have the following relation [Miettinen, 2012]:⋃
𝜇∈+

M

S(𝜇) ⊆ XPF({f i}M
i=1, 𝛼t) ⊆

⋃
𝜇∈M

S(𝜇), (13.6)

where the second inclusion is an equality if the objective functions are concave.
Relation (13.6) implies that if we solve

arg max
𝛾

M∑
i=1
𝜇if i(𝛾) s.t. 𝛼′𝛾 ≤ 1, (13.7)

with weights 𝜇 strictly positive, then this solution is guaranteed to be Pareto-
optimal. Furthermore, provided the objective functions f i are concave, all
Pareto-optimal solutions can be produced by solving (13.7) with weights varying
over the non-negative simplex M . In particular, this is useful since (13.7) is a
constrained single-objective optimization, which can be computed efficiently in
most cases if the utility functions are concave.

13.2.5 Inverse Multi-Objective Optimization

In this section, we make the concept of inverse multi-objective optimization
mathematically precise and introduce a key theorem enabling us to achieve it in
a general microeconomic framework.

13.2.5.1 Inverse Multi-Objective Problem
The inverse multi-objective optimization problem can be stated conceptually as
follows. Given constrained outputs (actions) of an observed multi-agent system,
does there exist a set of utility functions under which the observed outputs are
multi-objective optimal? Can these utility functions be reconstructed? At first, a
mathematical instantiation of this statement might be: Given (𝛼, 𝛽), does there
exist a set of utility functions {f i}M

i=1 and weights 𝜇 ∈ M such that

𝛽 ∈

{
arg max

𝛾

M∑
i=1
𝜇if i(𝛾) s.t. 𝛼′𝛾 ≤ 1

}
. (13.8)

If there exists such a set of weights 𝜇 and utility functions {f i}M
i=1, then we say that

the data (𝛼, 𝛽) is rationalized by these weights and utility functions. However, for
a single data-point (𝛼, 𝛽), there will always exist sets {f i} and 𝜇, which rationalize
it. To see this, take 𝜇 in the corner of the simplex, such that 𝜇i = 1 for some i and
𝜇j = 0∀j ≠ 1. Then, (13.8) reduces to 𝛽 ∈ arg max 𝛾 f i(𝛾) s.t. 𝛼′𝛾 ≤ 1, and obviously
one can find some f i for which this is true. Thus, the inverse multi-objective opti-
mization with a single data-point is trivial.

To make the problem nontrivial, we consider multiple data-points indexed by
time, i.e. suppose that we observe the dataset 𝜷 ∶= {𝛼t, 𝛽t} of constraint vectors 𝛼t
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and system outputs 𝛽t indexed over discrete-time t ∈ [T] ∶= {1,… ,T}. Then, this
extended inverse multi-objective optimization problem can be stated as follows:

Inverse Multi-Objective Optimization

Given a time-indexed dataset 𝜷 ∶= {𝛼t, 𝛽t}, do there exist utility functions
{f i}M

i=1 such that

𝛽t ∈

{
arg max

𝛾

M∑
i=1

𝜇if i(𝛾) s.t. 𝛼′t𝛾 ≤ 1

}
∀t ∈ [T],

for some weights 𝜇 in the simplex M? If so, how can one reconstruct these
utility functions?

The above problem is distinct from the (trivial) single data-point problem
explained above, since here, the utility functions {f i}M

i=1 must rationalize the data
{𝛼t, 𝛽t} for all t ∈ [T] simultaneously. One can easily see how this distinction
makes the problem nontrivial since the set of utility functions, which rationalize
the data-set for some fixed time-point may not rationalize the data for another
time-point. In this sense, the inverse multi-objective optimization problem tests
whether a multi-agent system behaves optimally (in the Pareto-sense) at each
time point and is also consistent in behaving optimally (w.r.t. the same utility
functions) over all tested time-points.

Figure 13.1 provides an illustration of the procedure for inverse multi-objective
optimization, in relation to the generative process of multi-objective optimization.

Next, we discuss a microeconomic solution to a specific form of this problem.

13.2.5.2 Group Revealed Preferences
The microeconomic field of Revealed Preferences aims to detect utility
maximization behavior among observed consumers. We present here the form of
multi-objective optimization considered in this literature, which is a special case
of the general multi-objective problem (13.1). Suppose that we have the dataset
of constraints and system responses 𝜷 = {𝛼t, {𝛽 i

t}
M
i=1, t ∈ [T]}. Here, 𝛽 i

t corre-
sponds to the action taken by agent i. We say that the dataset satisfies “collective
rationality” if it solves the following multi-objective optimization problem:

Microeconomic Collective Rationality

∃𝜇 ∈ M , {Ui}M
i=1, Ui ∶ ℝN → ℝ concave and monotone increasing, such that:

{𝛽 i
t}

M
i=1 ∈

{
arg max

{𝛾 i}M
i=1

M∑
i=1

𝜇iUi(𝛾 i) s.t. 𝛼′t

( M∑
i=1

𝛾 i

)
≤ 1

}
∀ t. (13.9)
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Figure 13.1 Forward and inverse multi-objective optimization. The (forward)
multi-objective optimization problem consists of a set of feasible actions and a utility
function for each agent. The optimization problem is to find an action at that maximizes
over the set of utility functions. The inverse multi-objective optimization problem is to
observe the actions taken and first determine if there exist individual utility functions
making the actions Pareto-optimal. Then, if so, these “rationalizing” utility functions
should be reconstructed.

Notice that this form of “collective rationality” can be obtained as a special case
of the more general form (13.1), where each agent’s utility function is only explic-
itly dependent on its own action. However, (13.9) still optimizes over joint actions
in the same sense as (13.1) since the linear constraint limits the sum of individual
actions.

The inverse multi-objective problem in this specialized case then is analogous to
the general problem in Figure 13.1: we ask if there exist utility functions such that
(13.9) holds for all t. In Cherchye et al. [2011], a necessary and sufficient condition
is derived for the dataset 𝜷 to be consistent with this notion of multi-objective
optimization.

Theorem 13.1 Let 𝜷 = {𝛼t, {𝛽 i
t}

M
i=1, t ∈ [T]} be a set of observations. The

following are equivalent:

1) there exists a set of M concave and continuous objective functions U1,… ,Um,
weights 𝜇 ∈ 

+
M and constraint p∗ such that ∀t ∈ [T]:

{𝛽 i
t}

M
i=1 ∈

{
arg max

{𝛾 i}M
i=1

M∑
i=1
𝜇iUi(𝛾 i) s.t. 𝛼′t

( M∑
i=1
𝛾 i

)
≤ p∗

}
, (13.10)
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2) there exist numbers ui
j ∈ ℝ, 𝜆i

j > 0 such that for all s, t ∈ [T], i ∈ [M]:

ui
s − ui

t − 𝜆
i
t𝛼

′
t [𝛽

i
s − 𝛽 i

t ] ≤ 0. (13.11)

Proof: See Proposition 1 of Cherchye et al. [2011].

Furthermore, if the above conditions hold, then specific utility functions that
“rationalize” the dataset can be reconstructed in the following way.

Corollary 13.1 Given constants ui
t, 𝜆

i
t, t ∈ [T], i ∈ [M], which make (13.11) fea-

sible, explicit monotone and continuous objective functions that “rationalize” the
dataset
{𝛼t, 𝛽

i
t , t ∈ [T], i ∈ [M]} are given by

Ui(⋅) = min
t∈[T]

[
ui

t + 𝜆
i
t𝛼

′
t [⋅ − 𝛽

i
t ]
]
, (13.12)

i.e. (13.10) is satisfied with objective functions (13.12).

Proof: See Lemma 1 of Snow et al. [2022].

These results give us a principled and efficient way of performing inverse
multi-objective optimization, by testing the feasibility of a linear program. We can
first test whether the data is consistent with “collective rationality,” i.e. whether
the group is behaving “intelligently” by consistently optimizing a set of utility
functions, then we can reconstruct individual utility functions that rationalize
the dataset. This gives us a mechanism for inferring the underlying distribution
of objectives in the group or for predicting future group behavior.

In this section, we have first presented the general forward and inverse multi-
objective optimization problems, then revealed a specific form of multi-objective
optimization that can be tested efficiently by solving a particular linear program.
Next, we present the setting in which we will apply these results: detecting UAV
coordination. We first outline the UAV-tracking dynamics and interaction model,
then show how this can be mapped to the setting presented in this first section,
allowing for efficient testing of UAV “coordination.”

13.3 Multi-Objective Optimization in UAV Networks

In this section, we consider the specific instantiation of a radar – UAV network
tracking scenario. The multi-objective optimization framework presented in
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Section 13.2 will allow us to precisely define coordination in the UAV network
and efficiently detect such coordination on the radar’s end. In this section, we

● present the radar – UAV network interaction dynamics,
● provide the definition of UAV network coordination,
● outline several motivational target-tracking frameworks, which give rise to the

above notion.

13.3.1 Interaction Dynamics

Here, we provide the general interaction dynamics between a UAV (target) net-
work and a radar (us). For now, let us define, at time t ∈ ℕ, the radar’s tracking
signal as 𝛼t and target i’s maneuver as 𝛽 i

t . Figure 13.2 displays the high-level inter-
action dynamics: The radar probes the target network and obtains measurements
of the network maneuvers. We will momentarily give explicit motivation for how
these variables can be interpreted in a physical-layer multi-target tracking sce-
nario. We consider inverse multi-objective optimization; we aim to detect whether
the target network coordinates in a specific sense (corresponding to our previous
notion of multi-objective optimization).

At an implementation level, we aim to detect whether the targets jointly adjust
their maneuvers such that their overall utility is maximized (in the Pareto-optimal
sense), subject to a constraint on their detectability by the radar. We will also
momentarily provide a definition and motivation for such a notion of detectability.

We consider two timescales for the interaction: the fast time scale k = 1, 2,…
represents the scale at which the target state and measurement dynamics occur,

Target network dynamics 

Radar

Tra
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al 

αt

M
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i
t}
M
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1

Figure 13.2 UAV network interaction. We represent the high-level radar tracking
waveform (parameters) by 𝛼t , and the target network maneuvers by {𝛽 i

t}i∈[M].
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and the slow timescale t = 1, 2,… represents the scale at which the radar probes
(tracking signals) and UAV maneuvers {𝛽 i

t}
M
i=1 occur.

Definition 13.3 (Radar – Multi-Target Interaction) The radar – UAV
network interaction has the following dynamics:

radar emission ∶ 𝛼t ∈ ℝN
+

UAV i maneuver ∶ 𝛽 i
t ∈ ℝN

+

UAV i state ∶ xi
k ∈ ℝq, xi

k+1 ∼ p𝛽 i
t
(x|xi

k)

radar observation ∶ yi
k ∈ ℝp, yi

k ∼ p𝛼t
(y|xi

k)

radar tracker ∶ 𝜋i
k =  (𝜋i

k−1, y
i
k),

(13.13)

where 𝜋i
k is radar i’s target state posterior, and  is a general Bayesian tracker.

For a fixed t in the slow timescale, 𝛼t abstractly represents the radar’s signal
output, which parameterizes its measurement kernel, and 𝛽 i

t represents target i’s
maneuver (radial acceleration, etc.), which parameterizes the state update kernel.
These interaction dynamics are illustrated in Figure 13.3. Taking the point of view
of the radar, we aim to detect if the targets are coordinating.

We next present precisely what is meant by coordination and motivate how
the mathematical definition can be derived from practical multi-target filtering
algorithms.

Target M

Target 1

αt
Radar controller

Fast time scale k = 0,1,2,... 

Cognitive radar

Slow time scale t = 0,1,2,...

πk
Tracking algorithm

( )

(

{ }

)

Figure 13.3 UAV network interaction dynamics. The interaction occurs at two
timescales. The slow timescale, indexed by t ∈ ℕ, is the scale at which radar waveform
signal parameters 𝛼t and target maneuvers {𝛽 i

t}
M
i=1 are adjusted. For a fixed radar tracking

waveform and set of target maneuvers, the radar obtains a sequence of target
measurements {yi

k}i∈[M], indexed on the fast timescale by k ∈ ℕ. From these
measurements, the radar implements a multi-target filtering algorithm to track the states
{xi

k}i∈[M] and thus can recover {𝛽 i
t}.
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13.3.2 UAV Network Coordination: Constrained Spectral
Optimization

Here, we present a correspondence between the spectral UAV network dynamics
and a constrained multi-objective optimization problem, thereby defining
what is meant by coordination and showing how it arises from the interaction
dynamics (13.13).

13.3.2.1 UAV Network Coordination
In formulating our problem, it is necessary to define rigorously what we mean
by UAV coordination. Examples of such coordination definitions have been pro-
posed and studied in works Snow et al. [2022], Snow and Krishnamurthy [2023],
and Shi et al. [2017]. We consider the following coordination specification. Each
UAV has an individual utility function f i, which maps from its state dynamics 𝛽 i

t ,
parametrizing the state transition kernel in (13.13), to a real-valued utility, i.e.

f i ∶ ℝN → ℝ,

Such utility functions can capture the UAVs’ flight objectives by quantifying
a reward profile for flight dynamics. The UAVs then should act to maximize
their individual utility functions at each point in time in order to achieve their
flight objective. However, such individual maximization would decouple the
UAV dynamics such that they act independently of each other’s trajectories. A
notion of coordination would need to capture a certain coupling or codependency
between these trajectories.

We propose to quantify this coupling through a constraint on the radar’s average
measurement precision. This captures the idea that the UAVs aim to obtain some
flight objective while jointly acting such that the entire network remains hidden
to a certain degree from the radar. This induces a coupling between UAV trajec-
tories; the UAVs must adjust their individual sequential state dynamics such that
the entire network satisfies a certain undetectability constraint.

This coordination formulation can be summarized informally as

maximize (f 1,… , f M), such that

average radar measurement precision ≤ bound.
(13.14)

The “maximize (f 1,… , f M)” can be interpreted in the framework of Pareto opti-
mality, as introduced in Section 13.2. The radar measurement precision bound
can be derived from standard multi-target tracking algorithms, as we show in
Section 13.3.2.2.

This leads us to our formal definition of coordination in a UAV network, given
as follows:
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Definition 13.4 (Coordinating UAV Network) Considering the interaction
dynamics (13.13), we define a coordinating UAV network to be a network of M
UAVs, each with individual concave, continuous, and monotone increasing2 objec-
tive functions f i ∶ ℝN → ℝ, i ∈ [M], which produces output signals {𝛽 i

t}
M
i=1 on the

slow timescale in accordance with
{𝛽 i

t}
M
i=1 ∈ arg max

{𝛽 i}M
i=1

{f 1(𝛽1),… , f M(𝛽M)}

s.t. 𝛼′t

( M∑
i=1
𝛽 i

)
≤ 1.

(13.15)

Note that (13.15) is a special case of the general multi-objective optimization
problem (13.1), in which the objective functions do not share a common argument
but the arguments are jointly constrained. Thus, a coordinating UAV network con-
trols its joint state dynamics (through e.g. controlling a certain formation) such
that they are Pareto optimal (Definition 13.1) with respect to each objective func-
tion, the tracking signal from the radar, and a constraint on the UAV network’s
detectability.

It is quite straightforward to interpret the individual utility functions f i of the
targets as encoding flight objectives, but one may well ask how the linear con-
straint in (13.15) corresponds to a bound on the radar’s average measurement pre-
cision, as suggested in the informal definition (13.14). We next provide an example
of multi-target state dynamics and several resultant radar tracking algorithms,
which naturally give rise to this constraint. The purpose is to shed light on how the
abstract constrained multi-objective optimization (13.15) can be recovered from
practical filtering-level tracking dynamics.

13.3.2.2 Multi-Target Spectral Dynamics
Here, we specify a concrete example of the abstract dynamics (13.13). Linear
Gaussian dynamics for a target’s kinematics [Li and Jilkov, 2003] and linear Gaus-
sian measurements at each radar are widely assumed as a useful approximation
[Bar-Shalom et al., 2004]. Thus, we will consider the following linear Gaussian
state dynamics and measurements over the fast time scale k ∈ ℕ, with a particular
t ∈ ℕ fixed:

xi
k+1 = Aixi

k +𝑤
i
k, xi

0 ∼ 𝜋i
0,

yi
k = Cixi

k + 𝑣
i
k, i ∈ [m],

(13.16)

2 This objective function structure is known as “locally non-satiated” in the microeconomics
literature and is not necessarily restrictive when considering target objectives, see
Krishnamurthy et al. [2020].
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where xi
k, 𝑤

i
k ∈ ℝq are the target i state and noise vectors, respectively, and

Ai ∈ ℝq×q is the state update matrix for target i. yi
k ∈ ℝp is the radar’s measure-

ment of target i, Ci ∈ ℝp×q is the measurement transformation, and 𝑣i
k ∈ ℝp is

the measurement noise. The constraints and subsequent radar responses will be
indexed over the slow time scale t ∈ ℕ. Abstractly, these will parameterize the
state and noise covariance matrices:

𝑤k ∼  (0,Qt(𝛽 i
t )), 𝑣i

k ∼  (0,Rt(𝛼t)). (13.17)

In this spectral interpretation, 𝛽 i
t represents the vector of eigenvalues of

state-noise covariance matrix Qt, and 𝛼t represents the vector of eigenvalues of the
inverse measurement noise covariance matrix R−1

t . Thus, given this interpretation,
we can view modulations of 𝛼t and 𝛽 i

t as corresponding to increased/decreased
measurement precision on the part of the radar. This will be made precise
subsequently when we discuss filtering details. First, we briefly illustrate how
such noise covariance matrices can be parameterized in the first place.

Waveform Design for Measurement Covariance Modulation To give a precise structure
to the radar dynamics, this section provides examples of how the observation noise
covariance Rt(𝛼t) in (13.17) can depend on the radar waveform. Further details on
maximum likelihood estimation involving the radar ambiguity function can be
found in Van Trees [2004] and Kershaw and Evans [1994]. The waveform specifi-
cations involve the following terms:

● c denotes the speed of light (in free space),
● 𝜔c denotes the carrier frequency,
● 𝜃 is an adjustable parameter in the waveform,
● 𝜂 is the signal to noise ratio at the radar,
● j =

√
−1 is the unit imaginary number,

● s(t) is the complex envelope of the waveform,
● 𝛼 is the vector of eigenvalues of R−1.

We now provide three example waveforms and their resulting observation noise
covariance matrices R(𝛼):

1) Triangular Pulse – Continuous Wave

s(t) =

{√
3

2𝜃

(
1 − |t|

𝜃

)
−𝜃 < t < 𝜃

0 otherwise

R(𝛼) =
⎡⎢⎢⎣

c2𝜃2

12𝜂
0

0 5c2

2𝜔2
c𝜃

2𝜂

⎤⎥⎥⎦ ,
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2) Gaussian Pulse – Continuous Wave

s(t) =
( 1
𝜋𝜃2

)1∕4
exp

(
−t2

2𝜃2

)
R(𝛼) =

⎡⎢⎢⎣
c2𝜃2

s𝜂
0

0 c2

2𝜔2
c𝜃

2𝜂

⎤⎥⎥⎦ ,
3) Gaussian Pulse – Linear Frequency Modulation Chirp

s(t) =

(
1
𝜋𝜃2

1

)1∕4

exp

(
−

(
1

2𝜃2
1
− j𝜃2

)
t2

)

R(𝛼) =
⎡⎢⎢⎣

c2𝜃2
1

2𝜂
−c2𝜃2𝜃

2
1

𝜔c𝜂
−c2𝜃2𝜃

2
1

𝜔c𝜂

c2

𝜔2
c𝜂

(
1

2𝜃2
1
+ 2𝜃2

2𝜃
2
1

)⎤⎥⎥⎦ .
The key idea is that by adapting the waveform parameters, the radar can modu-

late the covariance matrix R(𝛼). This modulation can be viewed at a higher level as
an adaptation of the eigenvalues of R(𝛼). We treat 𝛼 as the vector of eigenvalues of
R−1(𝛼), so that increasing 𝛼 increases the measurement precision. Such an increase
directly corresponds to, or is enacted by, changes to the physical-layer waveform
parameterization, as illustrated above.

Next, given the above Linear Gaussian specification of the multi-target dynamics
(13.16), we present two multi-target filtering examples. The goal is to illustrate how
the spectral interpretation of 𝛼t and 𝛽 i

t in (13.17) gives rise within these algorithms
to the linear constraint 𝛼t(

∑M
i=1 𝛽

i
t ) ≤ 1 in (13.15). Recall that this linear constraint

should correspond to a physical-layer bound on the radar’s average measurement
precision.

13.3.3 Multi-Target Filtering

The goal of this section is to present several multi-target tracking schemes, a simple
decoupled Kalman filter and a more complex joint probabilistic data association
filter (JPDAF) and show how the high-level coordination framework (13.19) can
be recovered from each. These serve as illustrative examples of how to map com-
plex multi-target tracking algorithms to the constrained multi-objective optimization
(13.15). One should be able to extend these mappings to other target tracking
schemes.

13.3.3.1 Decoupled Kalman Filtering
A simple interpretation of the multi-target tracking procedure is a standard decou-
pled Kalman filter, whereby after measurements are associated to each target, a
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standard Kalman filter is applied to track each target state separately. This pro-
cedure is idealized but allows for a nice exposition of the connection between
filtering precision and the constraint in (13.9).

Filter Dynamics Consider the linear Gaussian dynamics (13.16) and (13.17). Based
on observations yi

1,… , yi
k associated to target i, the tracking functionality in the

radar computes the target i state posterior

𝜋i
k =  (x̂i

k,Σ
i
k),

where x̂i
k is the conditional mean state estimate, and Σi

k is the covariance, com-
puted by the classical Kalman filter:

Σi
k+1|k = AiΣi

k(A
i)′ + Qt(𝛽 i

t )

Ki
k+1 = CiΣi

k+1|k(Ci)′ + Rt(𝛼t)

x̂i
k+1 = Aix̂i + Σi

k+1|k(Ci)′(Ki
k+1|k)−1(yi

k+1 − CiAix̂i
k)

Σi
k+1 = Σi

k+1|k − Σi
k+1|k(Ci)′(Ki

k+1)
−1CiΣi

k+1|k.
Under the assumption that the model parameters in (13.16) satisfy [Ai,Ci] is
detectable and [Ai,

√
Qt(𝛽 i

t )] is stabilizable, the asymptotic predicted covariance
Σi

k+1|k as k → ∞ is the unique non-negative definite solution of the algebraic
Riccati equation (ARE):

(𝛼t, 𝛽
i
t ,Σ) ∶=

− Σ + Ai(Σ − Σ(Ci)′[CiΣ(Ci)′ + Rt(𝛼t)]−1CiΣ)(Ai)′ + Qt(𝛽 i
t ) = 0.

(13.18)

Let Σ∗
t (𝛼t, 𝛽

i
t ) denote the solution of the ARE and Σ∗−1

t (𝛼t, 𝛽
i
t ) be its inverse, repre-

senting the asymptotic measurement precision obtained by the radar.

Extracting a Revealed Preference Bound By Lemma 3 of Krishnamurthy et al. [2020],
we can represent a limit Σ−1 on the radar’s precision of target i measurement,
Σ∗−1

t (𝛼t, 𝛽
i
t ) as the simple linear inequality 𝛼′t𝛽

i
t ≤ 1, i.e.

𝛼′t𝛽
i
t ≤ 1 ⟺ Σ∗−1

t (𝛼t, 𝛽
i
t ) ≤ Σ−1

where the constant 1 bound is taken without loss of generality. The key idea behind
this equivalence is to show that the asymptotic precision Σ∗−1

n (⋅, 𝛽 i
t ) is monotone

increasing in the first argument 𝛼t using the information Kalman filter formula-
tion. Then, we can represent a constraint on the radar’s average precision over
measurements of all targets as

𝛼′t

( M∑
i=1
𝛽 i

t

)
≤ 1. (13.19)
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Thus, we recover a direct correspondence between the radar’s average measure-
ment precision and the linear inequality constraint in (13.9). Thus, again, “collec-
tive rationality” (13.9) on the part of the UAV network can directly be interpreted
as the high-level constrained multi-objective optimization (13.14).

The recovery of this linear constraint (13.19) from the decoupled Kalman filter
gives a clear correspondence between the filtering dynamics and the high-level
objective constraint (13.14). However, this decoupled Kalman filtering scheme is
idealized and simplified; next, we outline a more sophisticated multi-target track-
ing algorithm, which is widely used in practice [Fortmann et al., 1980; Rezatofighi
et al., 2015], and show the same recovery of the linear constraint (13.19).

13.3.3.2 Joint Probabilistic Data Association Filter
The JPDAF operates under the regime, where n measurements yj

k, j ∈ [n] (13.24)
of m targets are obtained, and it is not known which measurements correspond to
which target. See Bar-Shalom and Li [1995] for clarification of any details.

Filter Dynamics Define the empirical validation matrix Ω = [𝜔jt, j ∈ [n],
t ∈ {0,… ,m}, with 𝜔jt = 1 if measurement j is in the validation gate of tar-
get t, and 0 otherwise. It is common to let the t = 0 index correspond to “none of
the targets.”

Now, we construct an object 𝜃 known as the “joint association event,” as

𝜃 =
m⋂

j=1
𝜃jtj
,

where

● 𝜃jt represents the event that measurement j originated from target t;
● tj is the index of the target which measurement j is associated with the event

under consideration.

So, 𝜃 can represent any possible set of associations between measurements and
targets.

Then, we can form the event matrix

Ω̂(𝜃) = [𝜔̂jt],

where

𝜔̂jt =

{
1, 𝜃jt ∈ 𝜃

0, else
,

Ω̂(𝜃) is thus the indicator matrix of measurement–target associations in event 𝜃.
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We say an event 𝜃 is a feasible association event if

1) a measurement is associated to only one source,
m∑

t=0
𝜔̂jt(𝜃) = 1, ∀ j ∈ [n], (13.20)

2) at most one measurement originates from each target,

𝛿t(𝜃) ∶=
n∑

j=1
𝜔̂jt(𝜃) ≤ 1, ∀ t ∈ [m]. (13.21)

Denote by Θ the set of all feasible events.
The binary variable 𝛿t(𝜃) is known as the “target detection indicator” since it

indicates whether, in event 𝜃, a measurement j has been associated to target t. We
may also define a “measurement association indicator”

𝜏j(𝜃) ∶=
m∑

t=1
𝜔̂jt(𝜃), (13.22)

which indicates whether a particular measurement j is associated with a target t.
Note the difference between (13.22) and (13.20); the latter sums from 0 to include
the possibility of a measurement being assigned to “no target,” i.e. clutter, while
the former sums from 1, indicating whether the measurement has been assigned
to an actual target.

Using these definitions, we can write the number of false (unassociated) mea-
surements in event 𝜃 as

𝜙(𝜃) ∶=
n∑

j=1
[1 − 𝜏j(𝜃)]. (13.23)

Using these preliminary concepts, the JPDAF can be formulated by first deriving
the posterior probability of joint-association events given the measured data, then
incorporating this into a standard filtering scheme akin to the Kalman filter. The
filtering can be done in an uncoupled or coupled manner; the former assumes
that target measurements are independently distributed, and the latter is capable
of correlations in target state estimation errors.

Uncoupled Filtering Now given a particular feasible joint-association event
𝜃k ∈ Θ, and letting 𝛿t, 𝜏j, and 𝜙 be shorthand for (13.21), (13.22), and (13.23),
respectively, evaluated at 𝜃k, Bar-Shalom and Li [1995] derives the posterior
probability P(𝜃k|{yj

k}
n
j=1), under the uncoupled assumption, as

P(𝜃k|{yj
k}

n
j=1) ∝

𝜙!
mk!

𝜇F(𝜙)V−𝜙
∏

j
[ftj(y

j
k)]

𝜏j
∏

t
(Pt

D)
𝛿t (1 − Pt

D)
1−𝛿t , (13.24)
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where Pt
D is the detection probability of target t, mk = n − 𝜙, and

ftj(y
j
k) =  (yj

k; ŷtj

k|k−1, S
tj

k ),

with ŷtj

k|k−1 being the predicted measurement for target tj in the previous iteration
of the filter, and Stj

k being the associated innovation covariance matrix. 𝜇F(𝜙) is
the probability mass function governing the number of false measurements 𝜙,
and such measurements not associated with a target are assumed uniformly dis-
tributed in the surveillance region of volume V .

Given, this posterior probability the uncoupled filter proceeds by separately fil-
tering each target state independently. For brevity, we do not introduce this filter-
ing process, but do so for the more sophisticated and robust coupled filter.

Coupled Filtering Given a particular feasible joint-association event 𝜃k ∈ Θ, and
letting 𝛿t, 𝜏j, and 𝜙 be shorthand for (13.21), (13.22), and (13.23), respectively,
evaluated at 𝜃k, Bar-Shalom and Li [1995] derives the posterior probability
P(𝜃k|{yj

k}
n
j=1) as

P(𝜃kP(𝜃k|{yj
k}

n
j=1) ∝

𝜙!
mk!

𝜇F(𝜙)V−𝜙ftj1 ,tj2 ,…
(yj

k, j ∶ 𝜏j = 1)
∏

t
(Pt

D)
𝛿t (1 − Pt

D)
1−𝛿t ,

(13.25)
where here ftj1 ,tj2 ,…

is the joint pdf of the measurements of the targets under consid-
eration, and tji

is the target in which yji
k is associated in event 𝜃k. Now, we introduce

the Joint Probabilistic Data Association Coupled Filter (JPDACF) state estimation
and covariance update.

We form the stacked state vector of predicted states, and associated covariance,
as

x̂k|k−1 =
⎡⎢⎢⎣
x̂1

k|k−1
⋮

x̂m
k|k−1

⎤⎥⎥⎦ ,
Pk|k−1 =

⎡⎢⎢⎢⎣
P1 1

k|k−1 … P1 m
k|k−1

⋮ ⋮
Pm 1

k|k−1 … Pm m
k|k−1

⎤⎥⎥⎥⎦ ,
where Pt1 t2 is the cross-covariance between targets t1 and t2. The coupled filtering
is done as follows:

x̂k|k = x̂k|k−1 + Wk

∑
𝜃

P(𝜃|{yj
k}

n
j=1)[yk(𝜃) − ŷk|k−1],

where

yk(𝜃) =
⎡⎢⎢⎢⎣

yj1(𝜃)
k
⋮

yjm(𝜃)
k

⎤⎥⎥⎥⎦ ,
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and ji(𝜃) is the measurement associated with target i in event 𝜃. The filter gain Wk
is given by

Wk = Pk|k−1Ĉ′
k
[
ĈkPk|k−1Ĉ′

k + R̂k
]−1
,

where

Ĉk = diag
[
𝛿1(𝜃)C1

k,… , 𝛿m(𝜃)Cm
k

]
R̂k = diag

[
R1

k,… ,Rm
k

]
,

are the block diagonal measurement and noise covariance matrices, respectively.
The binary detection indicator variables 𝛿i(𝜃) accounts for the possibility of a mea-
surement not being associated to target i. The predicted stacked measurement
vector is

ŷk|k−1 = Ĉkx̂k|k−1 = ĈkÂk−1x̂k−1,

with Âk−1 = diag[A1
k−1,… ,Am

k−1] being the block diagonal state update matrix.
The covariance of the updated state is given as

Pk|k = Pk|k−1 + [1 − 𝜓0]WkŜkW ′
k + P̃k, (13.26)

where Ŝk = ĈkPk|k−1Ĉ′
k + R̂k is the innovation covariance,

𝜓jt ∶=
∑

𝜃∶𝜃jt∈𝜃
P(𝜃|{yj

k}
n
j=1),

and 𝜓0 ∶=
∑m

j=1 𝜓j0 is the probability that no measurements arise from targets. P̃k
is the spread of the innovation terms:

P̃k ∶= WkS̃kW ′
k.

with

S̃k =

⎡⎢⎢⎢⎢⎣
∑mk

j=1𝜓j1

[
y1

k − x̂1
k|k−1

]
⋅
[

y1
k − x̂1

k|k−1

]′
− 𝜈1,k𝜈

′
1,k

⋮∑mk
j=1𝜓jm

[
ym

k − x̂m
k|k−1

]
⋅
[

ym
k − x̂m

k|k−1

]′
− 𝜈m,k𝜈

′
m,k

⎤⎥⎥⎥⎥⎦
.

and

𝜈i,k =
mk∑
j=1
𝜓ji

[
yi

k − x̂i
k|k−1

]
.
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Extracting a Revealed Preference Bound The crucial observation is that, as in the
Kalman filter algebraic Riccati equation (13.18), the covariance (13.26) is mono-
tone decreasing in 𝛼t, since this corresponds to increasing R̂k for fixed k. Thus, the
asymptotic measurement precision (inverse of asymptotic predicted covariance) is
monotone non-decreasing in 𝛼t, and by the same reasoning as Lemma 3 of Krish-
namurthy et al. [2020], we may derive the equivalence

𝛼t’

( M∑
i=1
𝛽 i

t

)
≤ 1 ⟺ lim

k→∞
P−1

k|k(𝛼t, {𝛽 i
t}) ≤ P̂−1

,

Thus, we again have that the constraint 𝛼t’
(∑M

i=1 𝛽
i
t

)
≤ 1 is a natural representa-

tion for a bound on the average measurement precision.

13.4 Detection of Coordination

In Section 13.3.3, we showed how a notion of coordination, corresponding to lin-
early constrained multi-objective optimization, arises naturally from several stan-
dard multi-target filtering algorithms. In this section, we illustrate how to detect
coordination in UAV networks using the microeconomic revealed preference tools
in Section 13.2.5. We first consider deterministic detection, which is a straight-
forward application of the results in Section 13.2.5, then extend this to optimal
statistical detection when UAV maneuvers are observed in noise.

13.4.1 Deterministic Coordination Detection

We take 𝛽 i
t > 0∀t ∈ [T], i ∈ [M], i.e. each UAV always has a non-zero process noise.

Then by Lemma 1 in Snow and Krishnamurthy [2023], (13.15) is equivalent to

{𝛽 i
t}

M
i=1 ∈ arg max

{𝛽 i}M
i=1

M∑
i=1
𝜇if i(𝛽 i) s.t. 𝛼′t

( M∑
i=1
𝛽 i

)
≤ 1, (13.27)

for any 𝜇 ∈ 
+
M .

Recall that we are interested in the inverse multi-objective optimization prob-
lem. The equivalence between (13.27) and (13.15) allows us to directly utilize
the microeconomic result Theorem 13.1, such that detecting coordination is
equivalent to solving the linear program (13.11). Furthermore, we can reconstruct
feasible utility functions that rationalize the dataset as (13.12). This procedure
for detection of coordination and utility function reconstruction is illustrated in
Algorithm 13.1.
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Algorithm 13.1 Detecting coordination
1: Record the time-indexed dataset of radar waveforms and UAV network

responses 𝜷 = {𝛼t, {𝛽 i
t}

M
i=1, t ∈ [T]}.

2: if ∃ui
j, 𝜆

i
j ∶ ∀s, t ∈ [T], i ∈ [M] ∶ ui

s − ui
t − 𝜆

i
t𝛼

′
t [𝛽

i
s − 𝛽 i

t ] ≤ 0 then
3: Declare coordination present
4: Reconstruct feasible utility functions Ui asUi(⋅) = mint∈[T][ui

t + 𝜆
i
t𝛼

′
t [⋅ − 𝛽

i
t ]

5: ⇒ ∃𝜇 ∈ M ∶ {𝛽 i
t}

M
i=1 ∈ arg max{𝛾 i}M

i=1

∑M
i=1 𝜇iUi(𝛾 i) ∶ 𝛼′t

(∑M
i=1 𝛾

i
)
≤ 1

6: end if

13.4.1.1 Numerical Example
Here, we provide a numerical example for the deterministic coordination detec-
tion and utility reconstruction procedure outlined in Algorithm 13.1. We consider
M = 3 targets and acquire data over T = 10 time-steps. The radar waveform mea-
surement covariance eigenvalue vector 𝛼t and each target maneuver vector 𝛽 i

t are
taken to be two-dimensional. The three targets are taken to have the following
simple utility functions:

f 1(𝛽) = det (Q(𝛽))2 = 𝛽(1)2𝛽(2)2

f 2(𝛽) =
√
𝛽(1)𝛽(2)

f 3(𝛽) = 𝛽(1)
√
𝛽(2).

(13.28)

We then generate the vectors 𝛼t, 𝛽
i
t , with 𝜇1 = 0.4, 𝜇2 = 0.4, 𝜇3 = 0.3, as follows:

● 𝛼t ∼ U[0.1, 1.1]2

● {𝛽 i
t}

M
i=1 ∈ arg max {𝛾 i}M

i=1

∑3
i=1 𝜇

if i(𝛾 i) s.t.𝛼′t (
∑3

i=1 𝛾
i) ≤ 1

Thus, the target responses {𝛽 i
t} satisfy our notion of coordination (multi-

objective optimization). Then, implementing Algorithm 13.1, we confirm that
the linear program (13.11) has a feasible solution, indicating the presence of
multi-objective optimization, and we may reconstruct feasible utility functions.
Reconstructed utility functions are illustrated in Figure 13.4. Notice that the
reconstructed utility functions match the relative profiles of the true utility
functions, and do so while being concave.

13.4.2 Statistical Detection of Coordination

Recall that thus far we have considered only deterministic UAV i dynamics 𝛽 i
t . We

now consider the case when these measured responses are corrupted by noise.



322 13 Multi-Agent Inverse Learning for Sensor Networks: Identifying Coordination in UAV Networks

2

1

β
(2

)

β(1)

f1(β)

(a)

0

15

10

5

0
0 1 2

2

1

β
(2

)

β(1)

f2(β)

(b)

0

2.5

1.5

0.5

2

1

0
0 1 2

2

1

β
(2

)

β(1)

f3(β)

(c)

0

2.5

1.5

0.5

2

1

0
0 1 2

2

1

β
(2

)

β(1)

U1(β)

(d)

0

8

6

4

2

0 1 2

2

1

β
(2

)

β(1)

U2(β)

(e)

0

15

10

5

0 1 2

2

1

β
(2

)

β(1)

U3(β)

(f)

0

15

5

10

0 1 2

Figure 13.4 f i(𝛽) is the true objective function of the ith radar, inducing the responses
{𝛽 i

t}
10
t=1. Ui(𝛽) is the reconstructed objective function for radar i, computed using the

dataset 𝜷 = {𝛼t , {𝛽 i
t}

M
i=1, t ∈ [T]} and (13.12). (a) f 1(𝛽) = det (Q(𝛽)), (b) f 2(𝛽) = Tr(Q(𝛽)),

(c) f 3(𝛽) =
√
𝛽(1)𝛽(2), (d) min

t∈[10]
[u1

t + 𝜆
1
t 𝛼

′
t [⋅ − 𝛽

1
t ], (e) min

t∈[10]
[u2

t + 𝜆
2
t 𝛼

′
t [⋅ − 𝛽

2
t ], and

(f) min
t∈[10]

[u3
t + 𝜆

3
t 𝛼

′
t [⋅ − 𝛽

3
t ].

We introduce a statistical detector for determining whether these noisy
responses are consistent with multi-objective optimization, with theoretical
guarantees on Type-I error.

Let 𝜷 denote the dataset when the radar responses are observed in noise:

𝜷 = {𝛼t, 𝛽
i
t, t ∈ [T], i ∈ [M]}, (13.29)

where 𝛽 i
t = 𝛽 i

t + 𝜖
i
t , and 𝜖i

t are independent random variables generated according
to distributions Λi

t. We propose a statistical detector to optimally determine if the
responses are consistent with Pareto optimality (13.1). Define

H0: null hypothesis that the dataset (13.29) arises from the optimization problem
(13.15) for all t ∈ [T].

H1: alternative hypothesis that the dataset (13.29) does not arise from the opti-
mization problem (13.15) for all t ∈ [T].

There are two possible sources of error:

● Type-I error: Reject H0 when H0 is valid.
● Type-II error: Accept H0 when H0 is invalid.
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We formulate the following test statistic Φ∗(𝜷), as a function of 𝜷, to be used in
the detector:

Φ∗(𝜷) = max
i

Φ̂i(𝜷), (13.30)

where Φ̂i(𝜷) is the solution to

min Φi ∶ ∃ui
t > 0, 𝜆i

t > 0 ∶ ui
s − ui

t − 𝜆
i
t𝛼

′
t (𝛽

i
s − 𝛽

i
t) − 𝜆i

tΦ
i
≤ 0. (13.31)

Form the random variable Ψ as

Ψ = max
i, t≠s

[𝛼′t (𝜖
i
t − 𝜖

i
s)]. (13.32)

Then, we propose the following statistical detector (with 𝛾 ∈ (0, 1)):

∫

∞

Φ∗(𝜷)
fΨ(𝜓)d𝜓

{
≥ 𝛾 ⇒ H0
< 𝛾 ⇒ H1

, (13.33)

where fΨ(⋅) is the probability density function of Ψ. Let FΨ be the cdf of Ψ and FΨ
be the complementary cdf of Ψ. Then, we have the following guarantees:

Theorem 13.2 Consider the noisy dataset (13.29), and suppose (13.31) has a fea-
sible solution. Then

1) The following null hypothesis implication holds:

H0 ⊆
⋂

i∈[M]
{Φ̂i(𝜷) ≤ Ψi}, (13.34)

2) The probability of Type-I error (false alarm) is

ℙΦ∗(𝜷)(H1|H0) = ℙ(FΨ(Φ∗(𝜷)) ≤ 𝛾 |H0) ≤ 𝛾,

3) The optimizer Φ∗(𝜷) yields the smallest Type-I error bound:

ℙ𝚽(𝜷)(H1|H0) ≥ ℙΦ∗(𝜷)(H1|H0) ∀𝚽(𝜷) ∈ [Φ∗(𝜷),Ψ].

Proof: See Snow and Krishnamurthy [2023].

The motivation for this detector is that it allows one to quantify a strict upper
bound on the probability of Type-I error; the specific choice of threshold 𝛾 is left
to the designer and may vary depending on application criteria.

In practice, one would likely not have access to the true density function fΨ(⋅).
However, it is typical to assume some structure on the additive noise process
{Λi

t, t ∈ [T]}i∈[M] such as Gaussianity. Thus, under such an assumption, one can
compute an approximation F̂Ψ(⋅) of the cumulative distribution function FΨ(⋅),
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Algorithm 13.2 Detecting multi-objective optimization
1: for l=1:L do
2: for i=1:M do
3: simulate 𝝐i

l = [𝜖i
1,… , 𝜖i

N ]
(l), 𝜖i

t ∼ Λi
t

4: end for
5: Compute Ψl ∶= maxi{maxt≠s[𝛼t(𝜖i

t − 𝜖
i
s)]}

6: end for
7: Compute F̂Ψ(⋅) from {Ψl}L

l=1
8: Record radar network response 𝜷̄ to the probe 𝛼t
9: Solve (13.30) for Φ∗(𝜷̄)

10: Save  ∶= {ûi
t, 𝜆̂

i
t, t ∈ [T], i ∈ [M]} such that

ûi
s − ûi

t − 𝜆̂
i
t𝛼

′
t (𝛽

i
s − 𝛽 i

t ) − 𝜆̂
i
tΦ̂

i(𝜷̄) ≤ 0 ∀i ∈ [M]

11: Implement detector (13.33) as

1 − F̂Ψ(Φ∗(𝜷̄))

{
> 𝛾 ⇒ H0

≤ 𝛾 ⇒ H1
(13.35)

then implement the statistical detector using this. Algorithm 13.2 provides such
an implementation of the statistical detector (13.33).

This section presented techniques for both deterministic and statistical
detection of coordination in UAV networks. These techniques exploit the
microeconomic revealed preference results in Section 13.2.5 and the abstract
correspondence between UAV dynamics and linearly constrained multi-objective
optimization in Sections 13.3.2 and 13.3.3.

13.5 Conclusion

We have investigated the mathematical properties of multi-objective optimization
and inverse multi-objective optimization and presented a microeconomic tech-
nique for performing the latter. We have demonstrated how this can be applied
in a UAV network coordination detection scheme, by utilizing radar tracking
signals. This methodology is more abstract than traditional electronic warfare
procedures and thus allows for a concise encapsulation of the above stated prob-
lem and algorithmic solution. We also show how this abstract formulation can be
recovered by several specific multi-target filtering algorithms and specifications of
radar waveform design. However, the application of the presented methodology
is not limited to these cases and can find use in a variety of inverse multi-objective
optimization settings.
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14.1 Introduction

The process in the field of science and technology has allowed researchers to
develop smart environments. This not only improves the quality of life but
also assists researchers in studying and analyzing human behavior. Prior to the
popularization of sensing systems in earlier times, there would be a considerable
amount of time and energy required to complete a task. This was tackled in
the late 1980s [Wieder and Neppl, 1992] when single-crystal silicon sensors
[Nag et al., 2015a, 2015b; Xu et al., 2019] were popularized for different
applications. These sensors have been formed with the conventional micro-
electromechanical systems (MEMS) [Nag et al., 2015c] technique, where there
is an easy possibility to customize the size and shape of the prototypes. These
silicon-based sensors have been used for various applications [Afsarimanesh
et al., 2017; Alahi et al., 2017]. Over time, scientists have also designed and
developed sensors with a flexible nature [Nag et al., 2017a; Han et al., 2019a].
These sensors have been formed with a wide range of nanomaterials [He et al.,
2022; Afsarimanesh et al., 2022; Nag et al., 2022a] and polymers [Nag et al., 2018a,
2019a] using different kinds of printing techniques [Khan et al., 2014]. Some of
the common nanomaterials like carbon nanotubes (CNTs) [Han et al., 2019b; Gao
et al., 2021; Nag et al., 2021a], graphene [Nag et al., 2021b, 2022b, 2023], graphite
[Nag et al., 2018b, 2018c], and other metallic nanomaterials [Liu et al., 2021;
Rafiee et al., 2021] have been used as per the requirement of the sensors. Each
of these nanomaterials has been fused with polymers and other nanomaterials

Wireless Sensor Networks in Smart Environments: Enabling Digitalization from Fundamentals to Advanced
Solutions, First Edition. Edited by Domenico Ciuonzo and Pierluigi Salvo Rossi.
© 2025 The Institute of Electrical and Electronics Engineers, Inc. Published 2025 by John Wiley & Sons, Inc.
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to form the resultant prototypes. Similar to the nanofillers, different kinds of
polymers like polydimethylsiloxane (PDMS) [Nag et al., 2016a, 2018d, 2019b],
polyethylene terephthalate (PET) [Wang et al., 2010; Nag et al., 2016b; Emamian
et al., 2017], polyimide (PI) [Nag et al., 2017b; Nag and Mukhopadhyay, 2018; Han
et al., 2019c], and others were used. These raw materials have been processed by
different printing methods, including 3D printing [He et al., 2020a; Kalkal et al.,
2021], laser ablation [He et al., 2020b; Alheshibri et al., 2022], and others. These
MEMS and printing techniques have been very effective in developing sensors
that have been used for smart environments.

The use of sensors for smart environments has been very effective in terms of
robustness and performance. The sensors have been deployed in various locations
[Mukhopadhyay, 2014; Zafeirelli and Kavroudakis, 2024] in a controlled environ-
ment to study human activities on a daily basis. This not only assists in deter-
mining human nature behavior but also protects patients and elderly people dur-
ing emergencies [Leelaarporn et al., 2021]. Since the inception of smart environ-
ments [Ramírez-Moreno et al., 2021; Zorkany et al., 2022], researchers have tried
to develop these scenarios with the assistance of actuators [Mukhopadhyay et al.,
2021] and wireless communication protocols [Mukhopadhyay, 2022]. The smart
environments have been able to utilize reliable networking infrastructure for data
transmission between the different units forming the particular smart services
[Kanellopoulos et al., 2023]. In specific cases, more than one wireless protocol
is being connected due to their individualistic dissimilar scales [Kanellopoulos
et al., 2023]. For example, smart home services have been known to use certain
personal area networks (PANs) like ZigBee (IEEE 802.1.4) [Kelly et al., 2013], LoRa
[Gupta and Van Zyl, 2021], and Bluetooth (IEEE 802.15.1) [James et al., 2022] in
smaller environments, while using WiMAX (IEEE 802.16) [Al-Azzawi et al., 2020]
in larger smart grid areas. All of these protocols have been able to trans-receive the
data in asynchronous and synchronous manner. They have been capable of dealing
with smart city applications in terms of data traffic and delay. Each of these proto-
cols has been tested with a tougher quality of service to improve their bandwidth
and decrease delay. Table 14.1 [Jawhar et al., 2018] shows some of the networking
architectures and protocols considered for smart city environments.

14.2 State-of-the-Art

Where is All The Water is a multi-disciplinary research collaboration project
involving four Australian universities, namely Macquarie University, University
of New South Wales, Australian National University, and the University of
Sydney. The project was managed by New South Wales Smart Sensing Networks
(NSSN) and financially supported by the Department of Planning, Industry



Table 14.1 Comparison of the networking architectures used for smart environments.

76541Protocol Char.
Physical layer
specs

Data link
layer specs Data rate

Transmission
range Smart city app.

IEEE 802.15.4
(ZigBee)

Energy saving,
very short-range

2.4 GHz
Band, DSSS

Carrier sense multiple
access with collision
avoidance (CSMA/CA)

20–250 kbps 10–20 m Smart buildings, smart
grid, smart water

IEEE 802.15.1
(Bluetooth)

Cable
replacement

2.4 GHz
Band,
FHSS/FSK

Master/Slave, time
division duplexing (TDD)

1 Mbps 10–100 m Smart buildings, smart
grid, smart water

IEEE 802.11a Data
networking,
local area
network

5 GHz,
OFDM

CSMA/CA, distributed
coordination function
(DCF)/point coordination
function (PCF)

6, 9, 12, 18, 24,
36, 48, 54 Mbps

120 m
outdoors

All

IEEE 802.11b Data
networking,
local area
network

2.4 GHz
Band, DSSS

CSMA/CA, DCF/PCF 1, 2, 5.5,
11 Mbps

140 m
outdoors

All

IEEE 802.11g Data
networking,
local area
network

2.4 GHz
Band, DSSS,
OFDM

CSMA/CA, DFS/PFS 6, 9, 12, 18, 24,
36, 48, 54 Mbps

140 m
outdoors

All

IEEE 802.11n Data
networking,
local area
network

2.4 GHz and
5 GHz Band,
DSSS,
OFDM

CSMA/CA, DFS/PFS 15, 30, 45, 60,
90, 120, 135,
150 Mbps

250 m
outdoors

All

IEEE 802.16
(WiMAX)

Metropolitan
area network

2–66 GHz
Band,
OFDMA

TDD, frequency division
duplexing (FDD)

2–75 Mbps Up to
35 miles

Smart grid, smart
water, pipeline
monitoring

Satellite Wide area
network

1.53–31 GHz Frequency division
multiple access (FDMA),
time division multiple
access (TDMA)

10 Mbps
(upload), 1 Gbps
(download)

Satellites
cover 100s of
km to the
entire earth

Pipeline monitoring,
unmanned aerial
vehicles (UAVs)

Source: Jawhar et al. [2018]/Springer Nature/CC BY 4.0.
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and Environment, Government of New South Wales [Andersen et al., 2025].
The project was completed in 2022, and it has shown for the first time that
low-cost sensor networks, in combination with other technologies, can respond
to the Australian infrastructure problem of great distances and low population
[Shearan et al., 2022]. It has demonstrated that local gravity measurements – once
commercially made available – can be a technology that can help us to map the
underground and assist with quantifying recharge to the groundwater. Along with
those technologies, satellites have an important role to play in the management
of resources. As an outcome of the project, large uncertainties are identified in
water accounting, with the interaction between surface and groundwater being
one of the major sources of uncertainty. Thus, innovative solutions to quantify
the fluxes between above and below ground remain a priority.

Around New South Wales, Australia, there are a total of 4673 sites with
telemetry-based monitoring systems, but only 396 recorded rainfall. Effectively, it
is extremely difficult to know the exact amount of water received by the region,
and then there are issues such as labor-intensive data collection, difficulty in
sensing underground parameters, limitations in modeling, gaps in the collected
data, as well as unaccounted differences. The completed project investigated the
design and development of low-cost sensors for real-time measurement of param-
eters of interest, installed at the right places, along with local gravity sensing for
underground parameters, satellite-based measurement, fusion of different types
of sensor data, and finally, analysis of data to predict water quantity to reduce
uncertainty. The details of the activities with different organizations, along with
the division of spatial resolution to justify the research activities, are shown in
Figure 14.1. For monitoring underground water movement with high spatial
resolution, low-cost sensors for the measurement of soil moisture and soil tem-
perature have been developed at Macquarie University, as shown in Figure 14.2.
Figure 14.3 shows the process and installation of the low-cost environmental
sensor node. The sensor can measure parameters up to a depth of 50 cm from the
ground surface, along with many other environmental parameters. The measured
data will be uploaded into the cloud through the Internet of Things (IoT) and will
be used to calculate evapotranspiration in real time. The knowledge of real-time
values of evapotranspiration can provide significant information on the missing
water from the water system.

A proper understanding of water loss in the water system needs the fusion of
different types of sensors. The reported sensors will produce measured data, a
combination of which will create an accurate and better picture of the status of the
quantification of water in our water system. There is a need for significant research
and development to develop low-cost, high-performance, selective sensors for the
detection of different parameters for the qualification of water to safeguard human
lives from consuming contaminated waters [Akhter et al., 2020, 2021a, 2021b;
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Figure 14.1 Representation of the steps followed in the project: Where is All The Water. Source: Adapted from XXX [2021].
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Figure 14.2 Development of a low-cost sensor for monitoring underground soil
moisture and soil temperature. Source: Afridi et al. [2023]/IEEE.

Figure 14.3 Installation of low-cost environmental sensor node.
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Shearan et al., 2021; Areekath et al., 2022; Hui et al., 2022; Wang et al., 2023].
The forward roadmap for the future, which shows the combination of knowledge
of hydrology, modeling, physical low-cost sensors, remote sensing, and data ana-
lytics, will be extremely useful in determining parameters for the governance of
water systems.

14.3 Immersive Technologies

Immersive technologies are playing an important role in promoting the Internet of
Things (IoT) and smart environments. They help create interactive, engaging, and
effective experiences within these environments. Here are some of the immersive
technologies commonly associated with smart IoT environments (Figure 14.4):
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Figure 14.4 Digital twin – device layer, digital model, data computation and display
(DDDD) architecture for a use case on health monitoring.
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14.3.1 Augmented Reality (AR)/Virtual Reality (VR) and Mixed
Reality (MR)

● Augmented reality (AR) can be used to provide technicians with timely informa-
tion and relevant data covering physical equipment, making maintenance and
repair easier.

● AR can help users navigate virtual environments by enhancing directions,
points of interest, and other relevant information in their field of view. Training
and simulation: virtual reality is used for immersive learning situations, allow-
ing users to simulate situations in a real-world environment. This is especially
useful for training users in a smart environment without exposing them to
real risks. Remote monitoring and control: virtual reality can enable remote
monitoring and control of devices and systems, providing environmental
indicators.

● Mixed reality (MR) combines the elements of AR and VR, allowing users to
interact with the physical and virtual worlds at the same time. This can improve
the user experience in a smart environment.

● MR can support collaborative work by allowing users to share and interact with
digital content directly in a shared physical space.

● Combination of sensors: integrating data from various sensors, including those
from immersive technologies, enables a comprehensive understanding of the
smart environment, leading to better decision-making.
Combining data from different sensors, including those from immersive tech-

nologies, helps to better understand the natural environment, leading to better
decision-making. Imagine a beautiful environment where different sensors are
strategically placed to capture different aspects of the environment. These sensors
can include traditional IoT devices, cameras, motion sensors, temperature sen-
sors, and immersive technologies such as AR and VR devices. Each sensor collects
specific data, contributing to a comprehensive view of the environment.

Example: IoT devices can collect data on temperature, humidity, and other envi-
ronmental variables. Camera: captures visual information, detects movement, and
identifies objects or people and provides user interaction and real-time insight into
a virtual mask or immersive experience. By combining the data streams from these
different sensors, a comprehensive and comprehensive picture of the intelligent
environment emerges. This universal understanding allows the following:

The integration of data helps to understand the context of the environment.
For example, temperature data from IoT sensors can be combined with visual
data from cameras to understand the impact of temperature changes on human
behavior or equipment performance. Immersive technology contributes to
virtual reality monitoring, providing dynamic overlays or virtual displays that
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update as the physical environment changes. This quick response is useful
for quick decision-making. Linked datasets can be analyzed using advanced
analytics and machine learning algorithms. This helps predict situations,
anomalies, or potential problems before they become serious, helping to make
better decisions. Integrating data from immersive technologies, such as aug-
mented reality and virtual reality, with traditional security systems can provide
a comprehensive security system. For example, combining visual data with
information from motion sensors can improve the accuracy of threat detection.
In the case of smart spaces designed for human interaction, understanding
user behavior through immersive technology can lead to a personalized and
user-friendly environment. The integration of data from various sensors,
including immersive technology, helps decision-makers better understand
the environment. This comprehensive data collection plays an important role
in making the right decisions, optimizing processes, and creating a safe and
efficient smart environment.

14.3.2 Smart Environments

A Digital Twin (DT) is a virtual representation of a physical object that enables
direct data exchange between its physical counterparts. In healthcare, DT pro-
vides revolutionary solutions, solving problems such as early detection of health
problems or monitoring chronic diseases in time. For example, a cardiac patient’s
DT can be analyzed to predict an upcoming cardiac event, thus providing prompt
intervention. In the future, it is expected that intervention will affect personalized
treatment and intervention. Digital technologies and services have been shown
to be beneficial to both health professionals and patients as they support data
collection, clinical communication, disease management, and other related ser-
vices [Xu et al., 2019]. In addition, DT can solve the gaps in the current health care
system, such as delays in obtaining patient data immediately in emergencies or
in remote areas, providing potential benefits of immediate diagnostic information
and immediate medical assistance, as described in Nag et al. [2015a]. This capabil-
ity helps deploy a variety of critical applications on the Internet of Things (IoT), as
shown in the study by Nag et al. [2015b, 2015c]. The digital transformation process
that currently affects many sectors, including health, began with the launch of the
Industry 4.0 project in 2013 [Alahi et al., 2017]. This process is based on advanced
technologies such as IoT, cloud and edge computing, AI, and big data analysis
[Afsarimanesh et al., 2017]. The DT system, based on the mentioned technolo-
gies, makes a digital transformation of any system and is often used by industrial
and engineering companies. Over the past decade, DT technology has been widely
adopted for healthcare applications. One of the best DT tools is Healthcare DT
(HDT) [Nag et al., 2017a; Han et al., 2019a].
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Device layer: this layer represents the controller, NodeMCU ESP8266, and wear-
able sensors. The aforementioned device layer plays a very important role in
data collection for the IoT Hub using the MQTT protocol. MQTT is a mes-
sage protocol designed specifically for networks with limited bandwidth, high
latency, and inconsistent connectivity, which is often encountered in the IoT
environment. Communication immediately plays an important role in the DT
process.

Digital model: virtual reality tends to provide users with medication reminders
and emergency notifications while monitoring the physiological state of the
patient directly using the wearable device. This involves building a history of
the participant, including sensor examples and activities to identify activities,
such as medication and health-related activities. These types can predict future
behavior and enable thinking and forecasting.

Data computation-cloud layer: comprises components essential for D2C
telemetry and data integration at the cloud layer.

Communication: the actual data exchange between the front layer, layer, and
cloud layer is possible through the communication layer. The protocols applied
to it are HTTPS and MQTT.

14.4 Immersive IoT Technologies

The combination of immersive IoT and mobile edge computing (MEC) provides
a powerful collaboration that can open new opportunities in different environ-
ments, delivering immersive content with low latency, improved efficiency, and
optimism. MEC is a network architecture concept that brings processing and secu-
rity capabilities closer to the edge of the network and closer to the data source.

Benefits:

● By processing data closer to the source, MEC reduces latency, which is critical
for applications. Bandwidth efficiency: offloading processing operations to the
edge reduces the need to transfer large amounts of raw data to central cloud
servers.

● Distributing computing resources at the edge enables better scalability and bet-
ter performance for a large number of connected devices.

The synergy between immersive IoT and MEC:

● Timing: MEC supports timing, which is important for an immersive experience
where low latency is essential to avoid delays.

● Reduced network load: by localizing data at the edge, immersive IoT appli-
cations can reduce the load on network infrastructure, thereby reducing com-
pression and improving overall performance. Keeping sensitive data close to the
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edge can improve the privacy and security of immersive applications because
sensitive information is not transmitted over long distances, thereby improving
privacy and security.

Use cases:

● Immersive IoT applications for smart city planning, navigation, and infrastruc-
ture, as well as MEC ensure low response.

● AR/VR tools are used for training, management, and monitoring in industrial
environments, and MEC supports real-time analysis and decision-making.

● MEC can support AR-assisted surgery or remote patient monitoring, increasing
the power of immersive IoT solutions for healthcare.

Given the inherent complexities of wireless communication and computation
technologies, decision-making and resource management in such dynamic envi-
ronments have become increasingly challenging. Making correct offloading deci-
sions is crucial for system efficiency, as incorrect choices can negatively impact
performance. Machine learning approaches offer a solution by learning from data
and enabling more efficient decision-making in offloading scenarios. This is very
useful when we deal with complex problems that require considering multiple fac-
tors. In contrast to classical methods, machine learning methods excel in dynamic
systems where decisions need to be made quickly and efficiently. Classical meth-
ods may struggle with non-polynomial optimization problems, which are imprac-
tical to solve in highly dynamic real-time systems. Therefore, in today’s highly
dynamic and time-critical smart systems, employing machine learning methods is
a more intelligent and beneficial approach. One of the important tasks of immer-
sive IoT technologies is the “Increasing system lifetime by optimal and accurate
offloading of compute-intensive tasks.”

The purpose of this case study is to automate the decision-making capabilities
of a system that will select a mobile device for task execution based on certain
parameters. Computation offloading is of two types: fine-grained (dividing the
task into multiple components) and coarse-grained (treating each task as a whole).
Here, we are providing a solution for coarse-grained offloading only, which tells
us we should execute the task locally or remotely as a whole. Most of these tasks or
data-offloading decision problems are dataset-dependent, and your problem for-
mulation should be highly corelated to the dataset. A common method followed
by everyone to determine the task size or task load is calculating the total CPU
cycle needed for the mobile device to complete that task (this can be achieved
with the help of task execution time). This value might not be very accurate as the
devices that we are using can be from different generations. In other words, they
can have different fabrication processes and distinct transistor sizes, so they might
use individual instruction sets, and each of these instructions might take random
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CPU cycles to complete. Therefore, instead of generalizing the CPU cycle count,
we should focus on a more consistent approach. For example, we can benchmark
a CPU to find out its capabilities in various task scenarios, and then we can see
what percentage of that processor is being used for how much time. Using this
method, we can generate real-time accurate task load data for further processing.

14.4.1 System Model

In order to execute the task remotely, we followed the client–server paradigm
using JAVA in Android Studio. Here, only one device can act as the local device
(Samsung on 5 Pro), and the better device (Realme 5 Pro) can be used as a remote
MEC server at a time. As the implementation and problem formulation are
dependent on the dataset, if you change any parameters of the research, then
we have to collect the dataset again for the new scenario. This selection is done
after testing the capabilities of the devices. Both devices will have the {pdf2text}
Android application installed within them for dataset creation. Another Android
application named {Decision} will be there only in the local device that will give
the offloading decision after taking input from the user (Figure 14.5).

We built an application named pdf2text. This Android app extracts text data from
PDF files and shows that content in an Android text-view. This will be our main
task of choice. We will run many PDF files on both devices locally and remotely
to see how they perform, and, in the background, we will run Android Studio

Decision
Application

Computation
Offloading Decision

Passmark/

pdftotext/
Accubattery

Android studio/

Dataset

Data CollectionData Collection

pdftotext application text extraction

Remote
Execution

Sending a
file

Local
Execution

Figure 14.5 System model.
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profiling and battery tracing apps to collect a lot of information. After training
the ML model, we cannot run this model directly in JAVA, an Android environ-
ment. First, this model is downloaded as a pickle file, and with the help of the
Flask framework, we convert our model to an application program interface (API)
that can be stored in the cloud services, and later on runtime, our mobile app can
access this model via API call. In the bottom left corner, battery consumption is
shown, and in the bottom right corner, CPU core usage is shown by Accubattery.
This instance is taken from a Realme 5 Pro device, which has an octa-core pro-
cessor. When we ran a file of size 1017 KB, we could see both high-performance
cores reached peak usage, but the other efficiency core’s usage stayed at a bare
minimum.

Local execution model: we are solving a coarse-grained [Nag et al., 2022a]
offloading decision problem by trying to automate the device selection, and for
that, we need to calculate the cost of execution in the local device. First, we will
find out the CPU’s capability. The Samsung device performs 1407 million integer
operations per second, which is shown in this benchmark. Let us call that local,
as it is directly proportional to the CPU frequency rate. When we extracted text
from a PDF file in the pdf2text application, the mobile device consumed pl mA
(milliampere) energy per second, the task was completed after tl seconds, and the
average CPU usage was given by s%. Then, the task (i) size for the local device
will be

Tl
i = flocal × s × tl,

and the total energy consumed by the local device for the task (i) will be

El
i = pl × tl.

For example, text extraction from a PDF file of size 627 KB took 4.677 seconds in
the Samsung device, with 31.33% CPU usage and 235.33 mA/s battery consump-
tion.

Task size = Tl = 1407 × 31.33 × 4.677
100

= 2061.68 (million ops).

Energy consumed = El = 235.33 × 4.677 = 1100.63 mA.

In our experiments, we saw that the Samsung device uses 110 mA when all the
background tasks are turned off except Bluetooth connectivity, and while transfer-
ring any file, it rises to 160–200 mA.

14.5 Network and Remote Execution Model

The computation offloading vastly depends on the communication mechanism
and distance between the devices. As our proposal is to make an energy-efficient
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algorithm, we used Bluetooth. For remote execution, we have two components:
data offloading cost and execution cost. We have calculated the capability of the
Realme device, which is 21,519 million operations per second. Let us call that frem.

To send a PDF file to a remote device, the local device consumes pcom mA energy
per second, and communication time is tcom. The remote mobile device consumes
pr mA (milliampere) energy per second, on average, for execution; the task is com-
pleted after tr seconds, and the average CPU usage is given by s%.

Then, the task (i) size for the remote device will be

Tr
i = frem × s × tr ,

and the total energy consumed by the local device for the task (i) would be

Er
i = ( pcom × tcom) + ( pr × tr).

Bluetooth transfer energy consumption is an overhead in remote execu-
tion = sender side + receiver side = 65 mA+ 40 mA = 105 mA. Let us take the
same example: to send the file from local to a remote device at a distance 40 ft,
it took 12.5 seconds, and text extraction from a PDF file of size 627 KB took
1.077 seconds in the Realme device, with 19.66% CPU usage and 221 mA/s battery
consumption took place.

Task size (Tl) = 21,519 × 19.66 × 1.077
100

= 4556.39 (million ops).

Energy consumed (Er) = (105 × 12.5) + (221 × 1.077) = 1550.51 mA.

14.5.1 Decision-Making Procedure

In order to provide a decision, the decision model requires a composite set of
inputs, which we call a system state given by S = {F, Pg, Tl, Tr, D, C}, where F is the
file size, Pg means the pages, Tl denotes the task size for the local device, Tr means
the task size for the remote device, D is the distance between devices, and C is com-
munication time. These are the same parameters we used to generate our dataset.
We observe the composite state S and then calculate the immediate costs of execut-
ing the task locally and offloading it. Based on these costs, we make the decision ri,
which can be either executing task (i) in the Samsung device (ri = 0) or offloading
it to the Realme device (ri = 1). If we take the same example of the subsection local
execution model and remote execution model, the local and remote energy costs
are 1100.63 and 1550.51 mA, respectively. Therefore, we select the local device for
this task.
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14.5.2 Data Collection

One of the major challenges in solving this decision problem was the lack of
a dataset. After completing the problem formulation, we decided to generate
two types of data: (i) computation cost and energy cost and (ii) network data.
Finally, they were merged together to generate a novel dataset of 2 of 6600 rows
(Figures 14.6 and 14.7).

We ran numerous PDF files of different types on the pdf2text Android appli-
cation and collected data using the Android Studio profiler and the Accubattery
application. Major features were PDF file size, the page count, RAM consumption,
local and remote CPU usage, local and remote task size (composite data), local and
remote execution time, local and remote energy consumption, etc. Even though
the energy cost computation ideas have been taken from the old literature in this

Figure 14.6 Extended dataset.

Figure 14.7 Final training dataset.
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Figure 14.8 Android Studio CPU and execution time profiling.

domain, we have given the idea to use CPU capability for most of the calculation.

Tasksize = s × f × t (million-ops),

where s is the average CPU usage, f is the CPU capability to perform integer oper-
ations, and t is the execution time (Figures 14.8 and 14.9).

As both of the devices belong to a different generation of silicon fabrication and
use a distinct version of OS, it is inevitable that they use a variable amount of
RAM while running the app pdf2text. Therefore, while calculating, we have nor-
malized the RAM usage value. While testing the Bluetooth capabilities in an open
environment, we saw that both devices were able to send data up to 200 ft (60 m)
of distance, but due to packet loss and inconsistent data transfer, we reduced our
range to 40 ft. We have sent files of sizes between 1 and 50 MB multiple times while
varying the distance between local and remote devices (Figure 14.10).

Similarly, for various files, we saw a uniform network speed drop when the dis-
tance between the two devices increased. When we are sending a 5 MB file 40 ft
away, it takes 56 seconds, but when we are sending a 40 MB file to the same dis-
tance, it takes 840 seconds, which is not 8 times the previous communication time,
so it is evident that at long distance, packet loss and signal barriers play a big role.

14.5.3 Optimal Problem Formulation

Using our mathematical model and dataset, we are training an ML/DL model.
The objective of that model is to make optimal offloading decisions for each task
or application. Let us denote the optimal offloading policy as σ, which minimizes
system cost in this way.

𝜎r = argmin
n∑

i=1
E(S, ri).

Minimizing system cost means each of our decisions will help us conserve
energy for the system as we select the mobile device that is optimal for the task.



Figure 14.9 Android Studio RAM profiling.
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Figure 14.10 Network speed drops with distance.

14.6 Results

After running different ML classification algorithms on our dataset, we found that
a 70 : 30 train (4620 rows) and test (1980 rows) split worked best. Out of these five
ML algorithms, random forest performs the best with 99.6% accuracy (Table 14.2).

Then, we trained a neural network with different parameters. The best perfor-
mance we obtained is 96.01% with 60 EPOCH and a 70 : 30 train–test split by using
two hidden layers of 128 neurons with ReLU activation function and an output
layer with softmax function (Tables 14.3 and 14.4).

Finally, we tested some of the elementary ways to offload the task or data.
Let us now see how decision accuracy affects energy consumption.

1) We try to extract text from a PDF file of size 10,203 KB (671 pages). If it is
done locally (Samsung device), then CPU usage is 38%, RAM usage is 90 MB,
time taken for completion is 180.272 seconds, and energy consumption will be
229.08 mA/s.

Energy used (El) = 180.272 × 229.08 = 41,296 mA.

In the case of offload (Realme device), CPU usage is 17.07%, RAM usage is
154 MB, time taken for completion is 34.631, and energy consumption will
be 504.45 mA. Assuming that these two devices are situated 2 ft apart, the file
transfer time is 50.1 seconds, and Bluetooth energy consumption is 105 mA/s.

Energy used (Er) = 34.631 × 504.45 + 50.1 × 105 = 22,730 mA.
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Table 14.2 Accuracy results of ML algorithms.

Algorithms Train/test split Accuracy (%)

SVM 60 : 40 67.77
70 : 30 67.78
80 : 20 67.95

KNN 60 : 40 98.86
70 : 30 99.24
80 : 20 99.17

Decision tree 60 : 40 99.36
70 : 30 99.29
80 : 20 99.32

Logistic regression 60 : 40 93.86
70 : 30 94.49
80 : 20 94.47

Random forest 60 : 40 99.43
70 : 30 99.60
80 : 20 99.47

Here, we can see that a single correct decision can save us 41,296 − 22,730 =
18,566 mA energy.

2) Our system battery capacity = (Samsung) 2080 mA h+ (Realme) 3159 mA
h = 5239 mA h2, which means our system can provide 5239 milliampere
continuous energy for 1 hour or (5239 × 60 × 60) = 18,860,400 mA energy.
The random forest algorithm gave us the best decision accuracy (99.6%) out of
all the models we tested. Assume that our system gets 800 tasks of 10,203 KB
files. It will select 797 (right) remote execution and 3 (wrong) local execution,
resulting in energy consumption of: 797 × 22,730+ 3 × 41,296 = 18,239,698,
which is less than our system battery capacity, so even after finishing 800
tasks, it leaves us with 620,702 mA system battery capacity.

3) Random offloading had an accuracy of 51.69%. Assume that our sys-
tem again gets 800 tasks of the same 10,203 KB files, it will select 413
remote execution and 387 local execution, resulting in energy consumption
of: 413 × 22,730+ 387 × 41,296 = 25,369,042 mA, which is much higher than
our system battery capacity, therefore both the devices will run out of battery
before most of the tasks are completed.
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Table 14.3 Accuracy of neural network.

Training rounds Split Accuracy (%)

10 EPOCH 60 : 40 89.66
70 : 30 92.27
80 : 20 92.04

30 EPOCH 60 : 40 93.07
70 : 30 94.85
80 : 20 94.09

50 EPOCH 60 : 40 95.42
70 : 30 95.05
80 : 20 94.14

60 EPOCH 60 : 40 95.45
70 : 30 96.01
80 : 20 94.92

70 EPOCH 60 : 40 95.76
70 : 30 95.45
80 : 20 95.30

80 EPOCH 60 : 40 94.81
70 : 30 95.61
80 : 20 95.98

Table 14.4 Accuracy of basic algorithms.

Basic algorithms Accuracy (%)

Random offload 41.9–51.69
Total offload 57.16
No offload 42.83

4) In case the random offloading achieves the best decisions in the first half of
the execution of 800 tasks, which is 413 correct decisions, our system will still
only be able to run 239 more tasks with the remaining battery. This way, we
can prove that our energy-efficient machine learning-based offloading scheme
is many times better than other basic approaches.
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Figure 14.11 Decision Android app.

In Figure 14.11, we can see our second application, which is called Decision. It is
taking the same input set that we have given to our ML model. A file of size 573 KB
(20 pages), with local and remote task sizes of 2803 million ops and 5000 million
ops, respectively, comes to the system. At that time, the distance between the local
and remote devices is 1 ft, and they can transfer this file within 5.5 seconds. Then,
the accurate decision is to offload the task to the Realme device.

The study focuses on the problem of offloading resource-intensive applications
in MEC networks for immersive IoT theme of applications. We generate cost func-
tions associated with local execution and offloading scenarios and present our
decision-making idea. To minimize the overall execution cost, we formulate the
problem as a binary classification problem and propose an algorithm, EEMOS,
which is trained on our original dataset. Our approach aims to minimize system
energy consumption. We compare our proposed approach (random forest imple-
mentation) with three alternative basic solutions, including total, random, and no
offloading policy, and demonstrate that it outperforms them in terms of offloading
accuracy by 42.44%, 47.91%, 56.77%, respectively, which improves system lifetime
immensely. We did not compare our work with the literature, as our data collection
method and problem formulation of task size calculation are novel.
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15.1 Introduction

The Internet of Things (IoT) enables a seamless interaction with a wide range
of everyday objects via the Internet. Earlier developments in the field primarily
focused on stand-alone applications, such as home and industry automation
[Mandula et al., 2015; Wollschlaeger et al., 2017], supply-chain management
[Ben-Daya et al., 2019], and precision agriculture [Ahmed et al., 2018; Khanna and
Kaur, 2019]. The common role of IoT technologies in these applications consists
of (i) embedding a wide range of sensors and actuators in homes, machines, con-
sumer electronics, moving vehicles, robots, etc. and (ii) establishing low-power
wireless networks to interconnect the sensors and the objects of interest with the
global Internet. As of today, the IoT has become an integral part of complex and
distributed systems involving many stakeholders and many applications.

One of the most thrilling applications in the IoT is the implementation of smart
environments. This task involves policymakers and urban planners, environment
protection agencies, and environment researchers – this diversity leads to com-
plexity, which begins with the various understandings of the term “smart envi-
ronment” among stakeholders. For sociologists, a smart environment is primarily
one that empowers communities, provides great transparency as regards the sig-
nificance and implementation of high-level policies, promotes equity and diver-
sity, enables the well-being of inhabitants [Toli and Murtagh, 2020], and fosters
resilience [Petersen et al., 2015]. For economists, it is one which warrants eco-
nomic vitality, prosperity, and easy commerce [Albino et al., 2015; Mouratidis and
Poortinga, 2020]. For environmentalists, it is one which ensures the protection

Wireless Sensor Networks in Smart Environments: Enabling Digitalization from Fundamentals to Advanced
Solutions, First Edition. Edited by Domenico Ciuonzo and Pierluigi Salvo Rossi.
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and sustainability of physical environments and a high quality of life [Aguilar and
San Román, 2019]. Most importantly, actual people live in, interact with, and are
assisted and affected by “smart environments.” Any of these stakeholders has dif-
ferent expectations and interacts differently with the IoT. The data abstraction they
are interested in likewise differs significantly.

The technical implementations of the IoT face the challenges of designing
a robust, distributed system, which meets a wide range of heterogeneous and
varying requirements. Sensors, meters, appliances, and other data sources have
to be sampled, and the data have to be compressed, aggregated, communicated,
and stored. In most cases, a single sensor node integrates multiple sensors,
each of which monitors a particular physical parameter. When the fundamental
frequencies of the underlying physical phenomena are known, the sampling rates
of the corresponding sensors can be determined by taking the Nyquist theorem
into consideration. In reality, however, the distributions and rates of change of
most parameters vary both in time and in space. As an illustration, consider the
monitoring of the six principal air pollutants defined by the US Environmental
Protection Agency (EPA) under the Clean Air Act [American Lung Association,
2020] (see Table 15.1). The EPA standard specifies the exposure limits, duration,
and frequency for each pollutant but does not provide technical details as to
their implementation. This includes the absence of a statement on the minimum
sampling rates, accuracy, and temporal and spatial resolutions with which the
parameters should be sampled. These issues can be partially addressed if individ-
ual users take charge of monitoring the parameters for personal ends. For example,
they can employ wearable sensors or sensors integrated with personal devices
(e.g. smartwatches, smartphones) whose location also implies personal location.
Since the EPA standard implies that data and high-level events – e.g., the frequency
of crossing important thresholds – have to be stored for years, individuals, in addi-
tion to sensing, should also provide data storage and background applications that
process, aggregate, analyze, and act on the sensed data. If, however, (i) individuals
should have to rely on publicly available infrastructure or data to keep track of
their exposure history to the principal pollutants or (ii) if the pollutants have to
be regulated, then the quality with which the parameters are sensed, aggregated,
shared, interpreted, and stored, among others, is of profound importance.

High quality data – having high spatio-temporal resolutions – can be obtained by
developing highly distributed and scalable sensing systems. This can be achieved
by using low-power and affordable sensors and intelligent sensor nodes. But these
systems will be limited in many respects, such as their computational power, com-
munication bandwidth, and energy. The purpose of this chapter is to share our
experience with developing IoT systems for smart environments and to highlight
both the opportunities and the challenges facing such systems.
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Table 15.1 The six principal air pollutants identified by the US Environment Protection
Agency and the corresponding exposure limits.

Pollutant
Primary (p)/
secondary (s)

Averaging
time Level Form

CO p 8 hours 9 ppm Not to be exceeded more than
once per year1 hour 35 ppm

Pb p and s Rolling
3 month
average

0.15 μg∕m3 Not to be exceeded

NO2 p 1 hour 100 ppb 98th percentile of 1-hour daily
maximum concentrations,
averaged over 3 years

p and s 1 year 53 ppb Annual mean

O3 p and s 8 hours 0.070 ppm Annual fourth-highest daily
maximum 8-hour concentration,
averaged over 3 years

PM2.5 p and s 1 year 12.0 μg/m3 Annual mean
1 year 15.0 μg∕m3 Averaged over 3 years

p and s 24 hours 35.0 μg∕m3 98th percentile, averaged over
3 years

PM10 p and s 24 hours 150 μg∕m3 Not to be exceeded more than
once per year on average over
3 years

SO2 p 1 hour 75 ppb 99th percentile of 1-hour daily
maximum concentrations,
averaged over 3 years

s 3 hours 0.5 ppm Not to be exceeded more than
once per year

CO: carbon monoxide; Pb: lead; NO2: nitrogen dioxide; O3: ozone; PM: particle pollution; SO2:
sulfur dioxide.
Source: Adapted from NAAQS Table, https://www.epa.gov/criteria-air-pollutants/naaqs-table,
last accessed on 15 January, 2024.

The remainder of this chapter is organized as follows. In Section 15.2, we present
two use cases and discuss opportunities and challenges in developing low-power
and energy-efficient sensing systems. In Section 15.3, we identify important tech-
nical requirements to develop sustainable and scalable IoT. In Section 15.4, we
discuss the latest developments in system support considering operating systems,
communication protocols, and infrastructure. Finally, in Section 15.5, we identify
and discuss some open issues and make concluding remarks.

https://www.epa.gov/criteria-air-pollutants/naaqs-table
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15.2 Application Scenarios and Use Cases

15.2.1 Water Quality Monitoring

Water quality monitoring is one of the most important assignments of a smart envi-
ronment. The task involves various subtasks, including monitoring (i) contam-
inants, (ii) pollutant discharge, (iii) impairment, (iv) drought, and (v) water use
[Messer et al., 2014; Altenburger et al., 2019; Mishra et al., 2021]. Each of these sub-
tasks involves several parameters to be monitored. Indeed, water quality monitor-
ing goes beyond monitoring actual water bodies to include air and land. Research
reveals that drought affects the concentration of pathogens and chemicals in
water [Wolfram et al., 2021]; similarly, the deposition of some chemicals –
such as calcium, magnesium, potassium, sodium, ammonium, nitrate, chlo-
ride, sulfate, and mercury – in the atmosphere affects water quality [Messer
et al., 2014]. Most of these tasks require advanced and costly instrumentation and
careful laboratory analysis. Considering the high price of sensors and the vast
regions to be monitored, achieving high spatio-temporal sensing is a formidable
challenge. At present, a combination of different approaches – wired sensing
systems, remote sensing, wireless in situ monitoring, unmanned surface vehicles,
and demand-based mobile sensing using special-purpose boats and crews – is
employed in different settings to ensure safe and sustainable use of water, though
a substantial body of research work confirms that this is far from adequate and
that the quality of water is deteriorating worldwide [Lemm et al., 2021; Salehi,
2022; Mishra, 2023].

In collaboration with researchers at the Knight School of Computing and Infor-
mation Sciences, Florida International University, we are developing low-cost and
low-power IoT sensor nodes for water quality monitoring. Currently, the nodes are
based on the Zolertia platform1 and integrate (i) two different radios (one oper-
ating at 2.4 GHz and the other in the sub-gigahertz frequency bands), (ii) a 3D
gyroscope, (iii) a 3D accelerometer, (iv) water and air temperature sensors, (v) a
pH sensor, and (vi) a total suspended solids (TSS) sensor.

15.2.1.1 Challenges of Autonomous Mobile Sensing
Our prototype partially addresses the questions of cost and resolution in water
quality monitoring. However, some challenges still remain to establish resilient
and scalable IoT sensing systems. One of these challenges is ensuring that the
nodes operate reliably in extreme weather conditions (excessive heat, high precipi-
tation, and heavy rainfall) and without inhibiting or being affected by surrounding
aquatic existence. Another challenge is establishing reliable wireless links and

1 https://docs.contiki-ng.org/en/release-v4.8/_api/group__zoul.html.

https://docs.contiki-ng.org/en/release-v4.8/_api/group__zoul.html
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maintaining network topology and network connectivity in the presence of a sig-
nificant amount of motion on the surface of the water on which the nodes are
deployed. To surmount the first challenge, we seal the sensor nodes and other
sensitive components inside floating waterproof boxes. This decision, however,
introduces its own challenges:

● In the absence of ventilation system, how can we manage the heat dissipation
produced by the various electronic components (the radio chips, the microcon-
troller, the power bank, etc.)?

● To what extent do the waterproof boxes affect the radiation and reception of
electromagnetic waves?

● Even though the power banks are fitted with solar panels to harvest solar energy,
confounding them inside the waterproof boxes prevents sunshine from reaching
them. How can we provide adequate protection to the power banks and still
harvest energy?

Some of these concerns are partially addressed at design time. For instance, the
second issue is partially addressed by employing waterproof marine antennas,
which are compatible with the RF front-ends of the two radios. Nevertheless, the
extent to which the antennas compensate for the waterproof boxes can only be
determined by carrying out experiments. The other concerns likewise require
experimental investigations. For these reasons, we carried out several experiments
with different configurations and involving different settings. In the first round
of experiments, we put the sensor nodes in open boxes (refer to Figure 15.1),
enabling the heat dissipation to exit from the boxes naturally and the electromag-
netic signals to propagate relatively freely. In the second round of experiments,

Figure 15.1 Deployment of sensor nodes in open boxes on the surface of two different
water bodies.
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Figure 15.2 Deployment of waterproof sensor nodes on the surface of different water
bodies.

we sealed the sensor nodes in waterproof boxes (refer to Figure 15.2). In all the
experiments, the nodes self-organized to establish multi-hop wireless sensor
networks.

In both types of experiments, the effect of heat dissipation originating from the
electronic components was negligible, but the effect of excessive external heat was
not. In order to distinguish between these, we performed experiments in different
weather conditions in Miami, Florida, between the beginning of June and the end
of August 2024. When the experiments were conducted early in the morning or
late in the afternoon, or when it was cloudy, there was no appreciable difference
in performance (packet delivery ratio, link quality fluctuation, and network frag-
mentation) between the nodes in the open boxes and the sealed boxes. But during
the daytime, when the sun was shining with full power, the performance of the net-
works established by the nodes in the open boxes deteriorated considerably, packet
loss exceeding on average 30% and some nodes failing to perform properly alto-
gether, thus causing the network to fragment. The performance of the networks
consistently improved when the nodes were sealed in the waterproof boxes in all
weather conditions. We suspect that the boxes protected the nodes not only from
the water but also from the extreme temperature and high relative humidity. More-
over, the gain of the waterproof marine antennas was high enough so as to make
the effect of the boxes on the propagation and reception of the electromagnetic
signal negligible. But all the networks were significantly affected by the motion of
the water – motion not only exacerbated link quality fluctuation but also continu-
ously changed the topology of the networks so that unicast communication often
resulted in high packet transmission delay, high packet loss, and high retransmis-
sion cost. Figure 15.3 displays the change in the received signal strength indicator
(RSSI) values of received packets and the 3D linear acceleration the receiving node
experienced as a result of the movement of the water on the surface of which the
node was deployed.
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Figure 15.3 Relationship between the change in the RSSI of received packets and the
change in the linear accelerations (along the three spatial dimensions) of a receiving
node.

15.2.1.2 System Architecture and Implementation
We extend the 6LoWPAN architecture [Mulligan, 2007] to establish and maintain a
fully connected network. The extended system aims to deal with mobility and link
quality fluctuation and consists of four components, namely, the link quality esti-
mation component, the transmission power adaptation component, the mobility
model, and the packet transmission scheduler (refer to Figure 15.4). The mobil-
ity model establishes a relationship between the past, the present, and the future
change in the RSSI of received packets using the Kalman Filter. This relationship
is translated into multiple thresholds of the transmission power. The link quality
estimation component evaluates link quality metrics (RSSI, packet reception ratio,
and link quality indicator [LQI]) and decides to either delay transmission or adjust
the transmission power. The transmission power adaptation component manages
the transmission power of the underlying radio. Finally, the packet transmission
scheduler manages the rate at which the user datagram protocol (UDP) layer sends
out packets for transmission. The reason we place the scheduler at this layer is in
order not to overwhelm the routing and the media access control (MAC) layers,
since these two layers also temporarily store packets from their neighbors, and
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Figure 15.4 The architecture and implementation of the IoT sensing system for water
quality monitoring.

their queues can easily overflow, leading to a considerable amount of packets being
dropped.

15.2.1.3 Deployment Results and Lessons Learned
We deployed wireless sensor networks on the surface of four water bodies – on
a lake at FIU’s Main Campus, North Biscayne Bay, South Beach, and Crandon
Beach – to study how their performance was affected by the movement of water.
The water bodies experience different levels of motion. Similarly, each node’s expe-
rience of motion was different from that of its peers even though they were all
deployed on the same water body and the distance of separation between them
was ca. 50 m. This resulted in a disparity of performance even within a single
network. Figure 15.5 displays the change in the RSSI of received packets for two
neighbor nodes and two different radios (CC1200 and CC2538). When using the
CC1200, the nodes were transmitting at 2 Hz rate; and when using the CC2538
radio, at 10 Hz rate. The water at Crandon Beach – to which the figure refers – was
moving appreciably (the experiments were conducted on August 28, 2023, at the
time when the entire region was experiencing Hurricane Idalia, a powerful and
destructive Category 4 hurricane2).

2 https://en.wikipedia.org/wiki/Hurricane_Idalia.

https://en.wikipedia.org/wiki/Hurricane_Idalia
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Figure 15.5 Link quality fluctuation of two neighbor nodes deployed on the surface of
water at Crandon Beach, Miami, Florida.

Since the sensor nodes were unfettered, the movement of water produced
two types of RSSI fluctuations, short-term fluctuations, which resembled fast
fading, and long-term fluctuations, which resembled slow fading. Apparently,
these fluctuations correspond to the localized and translational motions the two
nodes underwent. If we consider the CC2538 radio, the long-term link quality
fluctuation experienced an overall change of about 30 dBm from an initial state of
connectivity (−70 dBm) to a state of disconnection (−100 dBm). When the water
was modestly moved, a transmission power of 0 dBm was sufficient to establish a
connection between the two nodes. The radio’s output power can be programmed
up to a maximum value of 7 dBm. If one adjusts the output power by 1 dBm, then
seven stages of adaptation are possible to compensate for the change resulting
from the movement of water. A steady link quality can be achieved if one divides
the overall change in the RSSI values (30 dBm) into seven non-overlapping
groups. This means that for an average change of ca. 4 dBm, a corresponding
adjustment of 1 dBm in the output power enables the nodes to maintain a steady
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link quality until the connection can no longer be maintained. This is how the
mobility model enables link quality adaptation.

15.2.2 Mobile Urban Sensing: Energy-Neutral Air Quality Monitoring

Maintaining good air quality is critical for the health of citizens [American Lung
Association, 2020; Chen and Hoek, 2020]. People living in densely populated
urban environments are regularly exposed to dangerous air pollution emitted by
cars, power plants, and factories [American Lung Association, 2020]. Monitoring
the air quality at different locations in the city allows for early detection of critical
pollution levels and helps city planners to set up countermeasures. However, a
small number of measurement stations at fixed locations provide only limited
coverage of urban spaces. Bicycles, pedestrians, and car passengers move freely
within the city and only punctually pass by such monitored locations. As a
result, the collected data leaves out many blind spots and paints an incomplete
picture of actual pollution exposure. The monitoring coverage also cannot be
improved arbitrarily by just increasing deployment density, as that would result
in unreasonable cost and maintenance overhead. Mobile sensing, on the other
hand, promises better monitoring coverage without deploying many additional
sensors.

In this deployment case, we demonstrate how existing mobile urban infras-
tructure entities and autonomously operating sensing devices can be capitalized
to enhance sensing coverage. Figure 15.6 shows this deployment case: a
self-sustainable sensing system mounted on a public transport bus to measure
emission exposure in moving traffic. The bus is an emission-free electric vehicle
operated in the citywide public transportation network in Hamburg, Germany. By
virtue of the emission-free operation, our sensor node is able to observe pollution

Figure 15.6 ECO box prototype deployment on an electric bus.
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levels within ongoing traffic, without being affected by the emissions of the carrier
vehicle itself.

15.2.2.1 Challenges of Autonomous Mobile Sensing
This setting combines a unique set of challenges of perpetual, maintenance-free
operation in smart environments. Due to regulations by the bus operator, no infras-
tructure of the vehicle can be used, such as power or network uplink. Hence,
noninvasive mounting of the sensor node without any modifications of the bus
must be ensured. Regularly swapping batteries is also infeasible in this scenario
as the sensor is only accessible in the vehicle maintenance facility, and labor cost
would significantly increase operational expenses. The sensor node must there-
fore operate self-sustainably, solely powered via energy harvested from its solar
panel. Due to the mobility, the sensor has to locate itself via GPS so that measure-
ments can be linked to specific geographical coordinates. Time synchronization is
needed to accurately time stamp all collected data.

Energy harvesting is able to successfully utilize various energy sources in very
different application domains, such as wearables and smart buildings [Ma et al.,
2020], it promises to be an appropriate solution. However, a problem with mea-
suring particulate matter (PM) concentration is that it requires complex sensors of
relatively high-power consumption. GPS is also expensive in power consumption,
which challenges energy-neutral operation at typically obtainable energy harvest-
ing power levels [Sudevalayam and Kulkarni, 2011]. With the absence of a local
network uplink, the system relies on Low Power Wide Area Network (LPWAN)
technology with very limited data rates in the order of less than 1 kbit up to a few
kbits per second.

The mobile setting introduces significant dynamics in external conditions.
Energy available via solar energy harvesting depends on many factors, such
as slow seasonal variations and short-term weather conditions. For mobile
scenarios, this is further aggravated as orientation and obstacles that cast shadows
change frequently over time. Unpredictable operation of the bus that serves
different routes makes it even harder to predict energy availability. A reliable
prediction cannot be expected under these conditions. Instead, a self-adaptive
feedback mechanism is needed that can quickly adjust the system consumption
to the changing energy availability [Rottleuthner et al., 2021]. The node does
not only transmit measurement data but also statistics on the consumption of
individual actions it performs to allow for collecting metrics related to the power
management.

15.2.2.2 System Architecture and Implementation
The sensing system (see Figure 15.7) consists of multiple subsystems for power
management, sensing, processing, and communication. A low-power 32-bit
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Figure 15.7 Components used in the ECO box prototype (a) and a visualization of the
fully integrated design (b). The design is open source and targeted for building
energy-neutral sensing systems for long-term outdoor deployments.

microcontroller unit (MCU) runs firmware based on the open-source operating
system RIOT [Baccelli et al., 2018]. It controls all other subsystems, executes
the adaptive power management, and collects data from external sensors for
further processing. Power generated by the top-mounted solar panels is used
to charge a super-capacitor. The power management module is responsible for
self-measuring harvested and used energy by monitoring the super cap charging
and the system power consumption. An SDS011 sensor measures particulate
matter concentrations of the air (PM10 and PM2.5), with a resolution of 0.3 μg∕m3

and a maximum relative error of 15% ± 10 μg∕m3. With the BME280 sensor,
temperature, humidity, and pressure are measured. An MTK3339 module is
used for GPS positioning and time synchronization. The SX1272 radio module
uses the LoRa modulation to transmit data over long distances to be received by
community administered gateways of The Things Network (TTN).

15.2.2.3 Deployment Results and Lessons Learned
In our mobile sensing deployment, we collected data across an area of roughly
220 km2 between August 2019 and April 2024. The gathered data provides insights
into three main directions: urban pollution, network coverage, and self-sufficient
dynamic power management of mobile sensing devices. Very different environ-
mental conditions were encountered during the deployment with temperatures
ranging from −8 to 52∘C due to the outside placement in winter temperatures and
direct exposure to sunlight during summer. Temperature swings within a single
day reached up to 40∘K.
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Figure 15.8 Mobile sensing deployment in the city of Hamburg, Germany: mean
particulate matter pollution (PM2.5, a). Average signal-to-noise ratio of received data
transmissions with dots marking reported gateway locations (b).

We focus our results on particulate matter (PM) measurements of PM2.5,
as it was previously shown to increase mortality rate more significantly than
PM10 [Chen and Hoek, 2020]. Figure 15.8a shows a heat map of the average
PM2.5 concentration, which indicates several hotspots where average pollution
levels overshoot primary and secondary concentration levels as defined by the
NAAQS (see Table 15.1). The mean value across the whole area is 5.2 μg∕m3, with
the 98th percentile at 25 μg∕m3. More polluted hotspots were measured between
20 μg∕m3 and 100 μg∕m3, with one extreme outlier at 700 μg∕m3.

Next to pollution data, the collected data also enables a better understanding of
urban LoRa network coverage via geolocated signal-to-noise (SNR) measurements
of received transmissions. An inherent property of LoRaWAN infrastructure is that
each transmission may be received by multiple gateways. We therefore average the
SNR value of the weakest reception of each transmission to determine a conserva-
tive coverage map. Figure 15.8b shows the average of the minimum SNR for trans-
missions originated from each location sector. Circles mark the locations of the
gateways that forwarded our measurements and provided location information.
This data allows inferring insights about transmission distances and the quality
of location data provided by gateway operators. During the deployment 27 differ-
ent gateways forwarded data from our sensor. Six of those gateways did not expose
any location via metadata reported by The Things Network and one incorrectly
reported a location in Hong Kong. Only five gateways reported coordinates that
plausibly originated from an actual GPS measurement. We therefore conclude that
the gateway location information is not very reliable. Under these conditions, we
expect that a hypothetical localization based only on LoRaWAN, to be only of lim-
ited use for very rough estimates. The average distance of successful transmissions
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was 780 m, the 90th percentile is at 2.2 km, with the highest achieved distance
recorded at 18.5 km.

The power management statistics show that during normal operation, the over-
all energy consumed for obtaining a GPS fix varied largely with a relative standard
deviation of 75%. During normal operation, the system sent around 250 packets
per day. However, on average, only 38 packets per day successfully reached one
of the distributed gateways, which indicates problems with the network coverage
and transmission reliability. Caching data for delayed transmission at locations
with better coverage or alternatively using higher spreading factors for transmis-
sions could help to improve this. Long-term persistent storage on the sensor node
could provide additional insights by considering all the data that could not be suc-
cessfully transmitted.

The bus was regularly parked for charging, where repeated measurements at
the same location did not contribute to better monitoring coverage. A low-energy
movement detection sensor based on an inertial measurement unit (IMU) or a
vibration detector could be a useful extension to further improve obtained cover-
age for a given amount of harvested energy. In other cases, the bus was parked in
a garage for longer periods of time to do maintenance. Neither enough sunlight
nor GPS reception or network connectivity was available there, which depleted
the energy significantly faster than usual, thereby increasing bootstrapping time.

The GPS module of the sensing system relied on a backup battery to keep its
volatile state, which is needed for better location acquisition speed. The lifetime
was estimated to last throughout the deployment as the backup battery is only
used if no power is supplied to the GPS module. In our system, the GPS module is
powered via renewable energy harvested from the solar panels. During later devel-
opment, we determined that the software controlled low-power mode of the GPS
module resulted in too high-power consumption during sleep mode. Alternatively,
a transistor controlled by the MCU was then employed to cutoff the GPS supply
when unused. However, this resulted in a higher load on the backup domain bat-
tery, which was not noticed before the sensor box was deployed. After the battery
was depleted, the GPS module had to perform a GPS cold start for every location
acquisition, which significantly increased the GPS runtime and energy consump-
tion of the GPS. For better performance, the backup domain should also be pow-
ered by the renewable energy harvesting source.

Some of the changes above could have been retrofitted during deployment via
over-the-air (OTA) firmware updates. OTA updates over LoRaWAN, however, are
impractical due to very limited downlink bandwidth.

The backend infrastructure caused problems several times during the deploy-
ment. On some occasions, data was not correctly received from the TTN server
due to sporadic message queuing telemetry transport (MQTT) session timeouts
and server maintenance on our side. The impact of our own outages could have
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been reduced by setting up multiple distributed systems as simultaneous backup
subscribers for the data published via MQTT by the TTN server. The most critical
interruption was, however, caused by a breaking change in the TTN stack, which
required intervention on the management interface and a manual migration of
the sensor end device to the new TTN server instance. After the proposed migra-
tion process, our sensor took multiple weeks before it joined the network server
again. A control interface in the sensor firmware to schedule a node rejoin pro-
cedure remotely would have helped to speed up the migration. The new version
of the community-driven TTN stack (v3) was only slowly adopted by the commu-
nity and shows severely reduced coverage, as can be seen in Figure 15.9, which
compares both versions as presented by a third-party coverage map.

15.3 Requirements Analysis

The two use cases presented in Section 15.2 demonstrate the different ways
of developing adaptive, scalable, and low-power sensing systems, which can
achieve high spatio-temporal sensing. The presented system architectures – one
high-level, with a focus on networking aspects, and the other, low-level, with
a focus on the organization of hardware components, are intended to portray
complementary features. At the same time, the use cases serve to identify shared
features between heterogeneous platforms and applications. The usefulness of
low-power devices and networks greatly depends on how well the data they gen-
erate represent underlying realities. Individual sensors or sensor nodes may only
be marginally reliable, but the IoT as a whole has to be reliable and transparent as
regards the quality of data it generates. One key aspect of useful IoT deployments
is, therefore, to communicate and store data as reliably as possible. This, in turn,
requires highly resilient networks, which operate in extreme conditions and rough
environments. In such environments, individual nodes may unexpectedly exhaust
energy, wireless links may experience intense cross-technology interference, local
heat dissipation may render some of the nodes temporarily dysfunctional, and
so on. These conditions may force networks to fragment and individual nodes
to be disconnected from their parent networks for a long time. Self-adaptive
features, such as decentralized ad hoc and mesh networking, enable nodes to
surmount some of these challenges. Second, in the presence of outage and bad
coverage, local data storage on IoT end devices is critical. However, the data
may be voluminous and heterogeneous (metadata, performance indicators, logs,
and other device telemetry, which may require long-term persistence), requiring
advanced compression and data storage. As persistent flash storage becomes more
and more affordable, it will play a significant role in alleviating some of these
concerns. Third, reliance on services and infrastructure accessible via proprietary
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Figure 15.9 Coverage map maintained by the third-party project TTN Mapper,
comparing the discontinued The Things Network v2 to The Things Stack Community Edition
v3. Source: https://ttnmapper.org/heatmap.

cloud services is not long-lasting, as it depends on the success and goodwill of
manufacturers and operators. Open standards, unrestricted access rights, and
vendor-agnostic interoperability, on the other hand, ensure the desired flexibility
of operation, data access, continuity, and seamless integration and adaptation.
Fourth, as reliance on IoT services becomes ubiquitous, scalability, security, and
longevity become essential features. A sustainable growth of IoT deployments is
only feasible insofar as their maintenance requirements are low. Similarly, IoT

https://ttnmapper.org/heatmap
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devices typically operate with exhaustible batteries and, in most cases, replacing
or recharging batteries is time consuming and expensive. In some deployments,
it is even impractical. On the bright side, the energy efficiency of embedded
systems has steadily improved and enabled IoT devices to harvest energy from
their surrounding in a much more feasible way today than it was a decade ago.
Even so, work still remains to harvest energy reliably and achieve energy-neutral
operation.

15.4 System Support

Most low-power wireless IoT devices require specialized software support due to
their constrained capabilities. In addition, efficient and scalable use of the data
they generate can be possible through systematic data description, aggregation,
and abstraction.

15.4.1 IoT Operating Systems

With embedded hardware getting more sophisticated, it becomes increasingly
more complex to build and maintain hardware-specific software from scratch.
A multitude of open-source operating systems are available for small embedded
systems, which address this issue and simplify building modular, reusable
software. Projects such as Contiki [Dunkels et al., 2004], TinyOS [Levis et al.,
2005], FreeRTOS [Amazon Web Services, 2020], Zephyr [Zephyr Project, 2020],
RIOT [Baccelli et al., 2018], Tock [Levy et al., 2017], and Apache Mynewt [Apache
Software Foundation, 2020] significantly reduce development time and ease build-
ing – and building upon – maintainable software. Development in this domain
has already been going on for decades [Levis, 2012], and there are projects, which
undergo evolutionary redesigns, such as Contiki-NG [Oikonomou et al., 2022].

An additional benefit of bespoke platform-agnostic, open-source software
frameworks is the broad support for hardware platforms of various manufac-
turers. It helps to minimize the risk of vendor lock-ins and grants flexibility
in selecting the best suitable components for a targeted task. With sufficient
hardware abstraction layers, developers of embedded IoT applications are
relieved from the intricacies of low-level hardware specifics. Low-level com-
munication buses, hardware-accelerated crypto operations [Boeckmann et al.,
2022], timers, and other MCU peripherals are therefore easily accessible via
hardware-agnostic application programming interfaces (APIs). To verify that
different hardware-specific implementations interact with the physical world
according to their specification, continuous integration tests can be conducted on
automated infrastructure for Hardware-in-the-Loop testing [Weiss et al., 2021].
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Many IoT OSs also ship a big number of natively supported sensor and actuator
drivers, which enable the running software to bridge the gap between virtual logic
and our physical world. In order to distribute this information, the network stack
supplies network access and primitives, such as UDP sockets and protocol imple-
mentations for RESTFUL communication patterns (CoAP [Shelby et al., 2014]).
A versatile set of link technologies is supported by modern IoT OSs to offer suit-
able connectivity for, often orthogonal, application requirements, e.g. to prioritize
power, range, or bandwidth. Common examples are WiFi, local mesh, and ad hoc
networking (e.g. via IEEE 802.15.4 [IEEE 802.15 Working Group, 2016] and Blue-
tooth), long-range communication via LoRa and other sub-GHz technologies.

This provides means for interoperation and coordination between multiple net-
worked endpoints across the Internet. Via the Internet Protocol (IP), already bil-
lions of machines are connected, and with the adoption of IPv6, it is ready for
massive long-term growth. Being limited by strict memory and power constraints
of low-power and lossy IoT networks, demands for a light-weight adaptation layer
like 6LoWPAN do not interfere with the technical requirements of IPv6 (e.g. MTU
size).

15.4.2 Smart City Infrastructure

No smart environment can be conceived of without extending the concept to cities.
Poorly managed cities exacerbate pollution, increase impervious area, and trans-
form the configuration, composition, and context of land covers, thus having both
direct and indirect contributions to the quality of the environments surround-
ing them [Yu et al., 2013]. Smart cities, on the other hand, enable efficient use
of resources, accountability, transparency, and decision based on scientific evi-
dence. Not surprisingly, their realization also requires involvement on many levels:
laws and regulations on the basis of which they are established; availability and
accessibility of data, inhabitants committed to the realization of the vision, and
technical solutions to actually make it happen. Despite these challenges, the con-
cept of smart cities is currently being transformed from a theoretical concept and
experimental pilot studies to real-world operation.

International initiatives and national standardization bodies reflect this
with their work on defining and unifying reusable smart city architectures.
The European Innovation Partnership on Smart Cities and Communities
(EIP-SCC) is supported by the European Commission and defines a refer-
ence architecture for implementing urban platforms for smart cities, with an
interoperable, vendor-agnostic approach based on open standards [Heuser et al.,
2017]. This initiative was also picked up by national standardization, such as
DIN SPEC 91357, which extends the EIP-SCC architecture with additional city-
and community-specific capabilities. Standardization in this domain is still an
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open topic, as can be seen with the soon-to-be-released DIN SPEC 91387, which
aims to define a unified architecture specifically for urban digital twins and will
cover usage scenarios on a technical, as well as the user and decision-maker
perspective [Schubbe et al., 2023].

Similar trends can also be seen on the more local legislation level. For example,
the city of Hamburg passed a new progressive law for transparency in October
2012. The law obliges all state agencies to proactively provide access to public data
for all citizens and interested individuals, as long as it does not interfere with per-
sonal privacy rights [Herr et al., 2017]. It is meant to give people better insight
and control of government actions, to foster democratic processes, and it warrants
direct and immediate access to information.

While standardization and legislation are regularly being updated, system
implementations based on previously described reference architectures are
already deployed and used in practice. The urban data platform of the city of
Hamburg, which follows definitions by the EIP-SCC and DIN SPEC 91357, oper-
ates as an integrated system-of-systems. It provides open- and restricted-access
data of public authorities and third parties in the form of geospatial data, doc-
uments, and live sensor data. Many categories are covered, such as education,
science, health, environment, culture, urban infrastructure and development,
and traffic. Based on this data, it runs cloud services for analytics, mobile app
integrations, and end-user web applications to interact with the system and
access information. Its web services provide OGC compatible REST-APIs (e.g.
the SensorThings API [Liang et al., 2021]) and data models for unified access and
integration using HTTP and MQTT.

In order to identify relevant data in such smart environments, it is also crucial
to be able to find available data and understand its meaning and structure. There-
fore, metadata describing the published data can be accessed via a central online
service called MetaVer, where currently 8 of 16 German states index their public
metadata [Lukas et al., 2023].

A publicly available cockpit displays metadata and statistics about the urban
data platform usage.3 As of December 2023, it states in its yearly statistics that it
has over 300,000 unique monthly visitors, more than 600 million requests were
made, and almost 12 million downloads were served. It also integrates more than
6500 sensors, 578 different datasets, and 114 apps. Some examples for information
provided by these applications are availability information on electronic vehicle
chargers, rental bikes, and parking lots, locations of public outdoor swimming sites
with recent water quality measurements, noise level of traffic within the city, and
drinking water quality at different locations in the city.

3 https://geoportal-hamburg.de/udp-cockpit.

https://geoportal-hamburg.de/udp-cockpit
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In addition to just giving access to individual raw information, there are
also examples where the combination of different open data sources allows for
building new applications. One example for such a project is PrioBike [Krämer,
2022], which uses live traffic data, public map data, and speed measurements of
a navigation app or sensor installation, to provide a better biking experience for
cyclists, by prioritizing bikes over motorized vehicles via dynamic traffic light
control. Another example is a platform called Mundraub [Gildhorn, 2023], a
community project, which collects locations where edible fruits, nuts, and herbs,
can be collected in public spaces. It integrates data from Open Street Map, new
findings contributed by the community, and data of the city-wide tree register,
which is publicly available via the urban data platform.

15.5 Open Issues and Conclusions

In this chapter, we presented two different use cases – water quality monitoring
and urban air quality monitoring – to demonstrate the wide scope and usefulness
of low-power and energy-neutral IoT. The deployments clearly demonstrate the
potentials of IoT – low-cost, scalability, high spatial, and temporal resolution – but
also highlight some formidable challenges, including the need to process, com-
municate, and store a large amount of data. The use cases also demonstrate
several uncertainties arising from the dynamics of the deployment environments,
including strong link quality fluctuations due to excessive weather conditions
and the mobility of nodes, difficulty of predicting harvestable energy due to
sudden changes in the deployment environment (for our case, sudden changes
in the driving schedule of the vehicle carrying one of our IoT devices), and
frequent disconnection of links and high packet loss due to the movement of
water. Resolving these issues is critical to enable reliable and resilient IoT. We
expect future IoT devices to leverage more dynamic self-adaption mechanisms,
which readjust the hardware configuration for most efficient execution of variable
software tasks [Rottleuthner et al., 2022]. Moreover, accurate models of the
deployment environments are needed not only to account for the impacts of
external factors but also to overcome them. Addressing some of these challenges
is the focus of our future research.
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